131 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			Python
		
	
			
		
		
	
	
			131 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			Python
		
	
| from typing import Any, List
 | |
| import cv2
 | |
| import threading
 | |
| import gfpgan
 | |
| import os
 | |
| 
 | |
| import modules.globals
 | |
| import modules.processors.frame.core
 | |
| from modules.core import update_status
 | |
| from modules.face_analyser import get_one_face
 | |
| from modules.typing import Frame, Face
 | |
| import platform
 | |
| import torch
 | |
| from modules.utilities import (
 | |
|     conditional_download,
 | |
|     is_image,
 | |
|     is_video,
 | |
| )
 | |
| 
 | |
| FACE_ENHANCER = None
 | |
| THREAD_SEMAPHORE = threading.Semaphore()
 | |
| THREAD_LOCK = threading.Lock()
 | |
| NAME = "DLC.FACE-ENHANCER"
 | |
| 
 | |
| abs_dir = os.path.dirname(os.path.abspath(__file__))
 | |
| models_dir = os.path.join(
 | |
|     os.path.dirname(os.path.dirname(os.path.dirname(abs_dir))), "models"
 | |
| )
 | |
| 
 | |
| 
 | |
| def pre_check() -> bool:
 | |
|     download_directory_path = models_dir
 | |
|     conditional_download(
 | |
|         download_directory_path,
 | |
|         [
 | |
|             "https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/GFPGANv1.4.pth"
 | |
|         ],
 | |
|     )
 | |
|     return True
 | |
| 
 | |
| 
 | |
| def pre_start() -> bool:
 | |
|     if not is_image(modules.globals.target_path) and not is_video(
 | |
|         modules.globals.target_path
 | |
|     ):
 | |
|         update_status("Select an image or video for target path.", NAME)
 | |
|         return False
 | |
|     return True
 | |
| 
 | |
| 
 | |
| TENSORRT_AVAILABLE = False
 | |
| try:
 | |
|     import torch_tensorrt
 | |
|     TENSORRT_AVAILABLE = True
 | |
| except ImportError as im:
 | |
|     print(f"TensorRT is not available: {im}")
 | |
|     pass
 | |
| except Exception as e:
 | |
|     print(f"TensorRT is not available: {e}")
 | |
|     pass
 | |
| 
 | |
| def get_face_enhancer() -> Any:
 | |
|     global FACE_ENHANCER
 | |
| 
 | |
|     with THREAD_LOCK:
 | |
|         if FACE_ENHANCER is None:
 | |
|             model_path = os.path.join(models_dir, "GFPGANv1.4.pth")
 | |
|             
 | |
|             selected_device = None
 | |
|             device_priority = []
 | |
| 
 | |
|             if TENSORRT_AVAILABLE and torch.cuda.is_available():
 | |
|                 selected_device = torch.device("cuda")
 | |
|                 device_priority.append("TensorRT+CUDA")
 | |
|             elif torch.cuda.is_available():
 | |
|                 selected_device = torch.device("cuda")
 | |
|                 device_priority.append("CUDA")
 | |
|             elif torch.backends.mps.is_available() and platform.system() == "Darwin":
 | |
|                 selected_device = torch.device("mps")
 | |
|                 device_priority.append("MPS")
 | |
|             elif not torch.cuda.is_available():
 | |
|                 selected_device = torch.device("cpu")
 | |
|                 device_priority.append("CPU")
 | |
|             
 | |
|             FACE_ENHANCER = gfpgan.GFPGANer(model_path=model_path, upscale=1, device=selected_device)
 | |
| 
 | |
|             # for debug:
 | |
|             print(f"Selected device: {selected_device} and device priority: {device_priority}")
 | |
|     return FACE_ENHANCER
 | |
| 
 | |
| 
 | |
| def enhance_face(temp_frame: Frame) -> Frame:
 | |
|     with THREAD_SEMAPHORE:
 | |
|         _, _, temp_frame = get_face_enhancer().enhance(temp_frame, paste_back=True)
 | |
|     return temp_frame
 | |
| 
 | |
| 
 | |
| def process_frame(source_face: Face, temp_frame: Frame) -> Frame:
 | |
|     target_face = get_one_face(temp_frame)
 | |
|     if target_face:
 | |
|         temp_frame = enhance_face(temp_frame)
 | |
|     return temp_frame
 | |
| 
 | |
| 
 | |
| def process_frames(
 | |
|     source_path: str, temp_frame_paths: List[str], progress: Any = None
 | |
| ) -> None:
 | |
|     for temp_frame_path in temp_frame_paths:
 | |
|         temp_frame = cv2.imread(temp_frame_path)
 | |
|         result = process_frame(None, temp_frame)
 | |
|         cv2.imwrite(temp_frame_path, result)
 | |
|         if progress:
 | |
|             progress.update(1)
 | |
| 
 | |
| 
 | |
| def process_image(source_path: str, target_path: str, output_path: str) -> None:
 | |
|     target_frame = cv2.imread(target_path)
 | |
|     result = process_frame(None, target_frame)
 | |
|     cv2.imwrite(output_path, result)
 | |
| 
 | |
| 
 | |
| def process_video(source_path: str, temp_frame_paths: List[str]) -> None:
 | |
|     modules.processors.frame.core.process_video(None, temp_frame_paths, process_frames)
 | |
| 
 | |
| 
 | |
| def process_frame_v2(temp_frame: Frame) -> Frame:
 | |
|     target_face = get_one_face(temp_frame)
 | |
|     if target_face:
 | |
|         temp_frame = enhance_face(temp_frame)
 | |
|     return temp_frame
 |