623 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			Python
		
	
			
		
		
	
	
			623 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			Python
		
	
| from typing import Any, List
 | |
| import cv2
 | |
| import insightface
 | |
| import threading
 | |
| import numpy as np
 | |
| import modules.globals
 | |
| import logging
 | |
| import modules.processors.frame.core
 | |
| from modules.core import update_status
 | |
| from modules.face_analyser import get_one_face, get_many_faces, default_source_face
 | |
| from modules.typing import Face, Frame
 | |
| from modules.utilities import (
 | |
|     conditional_download,
 | |
|     is_image,
 | |
|     is_video,
 | |
| )
 | |
| from modules.cluster_analysis import find_closest_centroid
 | |
| import os
 | |
| 
 | |
| FACE_SWAPPER = None
 | |
| THREAD_LOCK = threading.Lock()
 | |
| NAME = "DLC.FACE-SWAPPER"
 | |
| 
 | |
| abs_dir = os.path.dirname(os.path.abspath(__file__))
 | |
| models_dir = os.path.join(
 | |
|     os.path.dirname(os.path.dirname(os.path.dirname(abs_dir))), "models"
 | |
| )
 | |
| 
 | |
| 
 | |
| def pre_check() -> bool:
 | |
|     download_directory_path = abs_dir
 | |
|     conditional_download(
 | |
|         download_directory_path,
 | |
|         [
 | |
|             "https://huggingface.co/hacksider/deep-live-cam/blob/main/inswapper_128_fp16.onnx"
 | |
|         ],
 | |
|     )
 | |
|     return True
 | |
| 
 | |
| 
 | |
| def pre_start() -> bool:
 | |
|     if not modules.globals.map_faces and not is_image(modules.globals.source_path):
 | |
|         update_status("Select an image for source path.", NAME)
 | |
|         return False
 | |
|     elif not modules.globals.map_faces and not get_one_face(
 | |
|         cv2.imread(modules.globals.source_path)
 | |
|     ):
 | |
|         update_status("No face in source path detected.", NAME)
 | |
|         return False
 | |
|     if not is_image(modules.globals.target_path) and not is_video(
 | |
|         modules.globals.target_path
 | |
|     ):
 | |
|         update_status("Select an image or video for target path.", NAME)
 | |
|         return False
 | |
|     return True
 | |
| 
 | |
| 
 | |
| def get_face_swapper() -> Any:
 | |
|     global FACE_SWAPPER
 | |
| 
 | |
|     with THREAD_LOCK:
 | |
|         if FACE_SWAPPER is None:
 | |
|             model_path = os.path.join(models_dir, "inswapper_128_fp16.onnx")
 | |
|             FACE_SWAPPER = insightface.model_zoo.get_model(
 | |
|                 model_path, providers=modules.globals.execution_providers
 | |
|             )
 | |
|     return FACE_SWAPPER
 | |
| 
 | |
| 
 | |
| def swap_face(source_face: Face, target_face: Face, temp_frame: Frame) -> Frame:
 | |
|     face_swapper = get_face_swapper()
 | |
| 
 | |
|     # Apply the face swap
 | |
|     swapped_frame = face_swapper.get(
 | |
|         temp_frame, target_face, source_face, paste_back=True
 | |
|     )
 | |
| 
 | |
|     if modules.globals.mouth_mask:
 | |
|         # Create a mask for the target face
 | |
|         face_mask = create_face_mask(target_face, temp_frame)
 | |
| 
 | |
|         # Create the mouth mask
 | |
|         mouth_mask, mouth_cutout, mouth_box, lower_lip_polygon = (
 | |
|             create_lower_mouth_mask(target_face, temp_frame)
 | |
|         )
 | |
| 
 | |
|         # Apply the mouth area
 | |
|         swapped_frame = apply_mouth_area(
 | |
|             swapped_frame, mouth_cutout, mouth_box, face_mask, lower_lip_polygon
 | |
|         )
 | |
| 
 | |
|         if modules.globals.show_mouth_mask_box:
 | |
|             mouth_mask_data = (mouth_mask, mouth_cutout, mouth_box, lower_lip_polygon)
 | |
|             swapped_frame = draw_mouth_mask_visualization(
 | |
|                 swapped_frame, target_face, mouth_mask_data
 | |
|             )
 | |
| 
 | |
|     return swapped_frame
 | |
| 
 | |
| 
 | |
| def process_frame(source_face: Face, temp_frame: Frame) -> Frame:
 | |
|     if modules.globals.color_correction:
 | |
|         temp_frame = cv2.cvtColor(temp_frame, cv2.COLOR_BGR2RGB)
 | |
| 
 | |
|     if modules.globals.many_faces:
 | |
|         many_faces = get_many_faces(temp_frame)
 | |
|         if many_faces:
 | |
|             for target_face in many_faces:
 | |
|                 if source_face and target_face:
 | |
|                     temp_frame = swap_face(source_face, target_face, temp_frame)
 | |
|                 else:
 | |
|                     print("Face detection failed for target/source.")
 | |
|     else:
 | |
|         target_face = get_one_face(temp_frame)
 | |
|         if target_face and source_face:
 | |
|             temp_frame = swap_face(source_face, target_face, temp_frame)
 | |
|         else:
 | |
|             logging.error("Face detection failed for target or source.")
 | |
|     return temp_frame
 | |
| 
 | |
| 
 | |
| 
 | |
| def process_frame_v2(temp_frame: Frame, temp_frame_path: str = "") -> Frame:
 | |
|     if is_image(modules.globals.target_path):
 | |
|         if modules.globals.many_faces:
 | |
|             source_face = default_source_face()
 | |
|             for map in modules.globals.source_target_map:
 | |
|                 target_face = map["target"]["face"]
 | |
|                 temp_frame = swap_face(source_face, target_face, temp_frame)
 | |
| 
 | |
|         elif not modules.globals.many_faces:
 | |
|             for map in modules.globals.source_target_map:
 | |
|                 if "source" in map:
 | |
|                     source_face = map["source"]["face"]
 | |
|                     target_face = map["target"]["face"]
 | |
|                     temp_frame = swap_face(source_face, target_face, temp_frame)
 | |
| 
 | |
|     elif is_video(modules.globals.target_path):
 | |
|         if modules.globals.many_faces:
 | |
|             source_face = default_source_face()
 | |
|             for map in modules.globals.source_target_map:
 | |
|                 target_frame = [
 | |
|                     f
 | |
|                     for f in map["target_faces_in_frame"]
 | |
|                     if f["location"] == temp_frame_path
 | |
|                 ]
 | |
| 
 | |
|                 for frame in target_frame:
 | |
|                     for target_face in frame["faces"]:
 | |
|                         temp_frame = swap_face(source_face, target_face, temp_frame)
 | |
| 
 | |
|         elif not modules.globals.many_faces:
 | |
|             for map in modules.globals.source_target_map:
 | |
|                 if "source" in map:
 | |
|                     target_frame = [
 | |
|                         f
 | |
|                         for f in map["target_faces_in_frame"]
 | |
|                         if f["location"] == temp_frame_path
 | |
|                     ]
 | |
|                     source_face = map["source"]["face"]
 | |
| 
 | |
|                     for frame in target_frame:
 | |
|                         for target_face in frame["faces"]:
 | |
|                             temp_frame = swap_face(source_face, target_face, temp_frame)
 | |
| 
 | |
|     else:
 | |
|         detected_faces = get_many_faces(temp_frame)
 | |
|         if modules.globals.many_faces:
 | |
|             if detected_faces:
 | |
|                 source_face = default_source_face()
 | |
|                 for target_face in detected_faces:
 | |
|                     temp_frame = swap_face(source_face, target_face, temp_frame)
 | |
| 
 | |
|         elif not modules.globals.many_faces:
 | |
|             if detected_faces:
 | |
|                 if len(detected_faces) <= len(
 | |
|                     modules.globals.simple_map["target_embeddings"]
 | |
|                 ):
 | |
|                     for detected_face in detected_faces:
 | |
|                         closest_centroid_index, _ = find_closest_centroid(
 | |
|                             modules.globals.simple_map["target_embeddings"],
 | |
|                             detected_face.normed_embedding,
 | |
|                         )
 | |
| 
 | |
|                         temp_frame = swap_face(
 | |
|                             modules.globals.simple_map["source_faces"][
 | |
|                                 closest_centroid_index
 | |
|                             ],
 | |
|                             detected_face,
 | |
|                             temp_frame,
 | |
|                         )
 | |
|                 else:
 | |
|                     detected_faces_centroids = []
 | |
|                     for face in detected_faces:
 | |
|                         detected_faces_centroids.append(face.normed_embedding)
 | |
|                     i = 0
 | |
|                     for target_embedding in modules.globals.simple_map[
 | |
|                         "target_embeddings"
 | |
|                     ]:
 | |
|                         closest_centroid_index, _ = find_closest_centroid(
 | |
|                             detected_faces_centroids, target_embedding
 | |
|                         )
 | |
| 
 | |
|                         temp_frame = swap_face(
 | |
|                             modules.globals.simple_map["source_faces"][i],
 | |
|                             detected_faces[closest_centroid_index],
 | |
|                             temp_frame,
 | |
|                         )
 | |
|                         i += 1
 | |
|     return temp_frame
 | |
| 
 | |
| 
 | |
| def process_frames(
 | |
|     source_path: str, temp_frame_paths: List[str], progress: Any = None
 | |
| ) -> None:
 | |
|     if not modules.globals.map_faces:
 | |
|         source_face = get_one_face(cv2.imread(source_path))
 | |
|         for temp_frame_path in temp_frame_paths:
 | |
|             temp_frame = cv2.imread(temp_frame_path)
 | |
|             try:
 | |
|                 result = process_frame(source_face, temp_frame)
 | |
|                 cv2.imwrite(temp_frame_path, result)
 | |
|             except Exception as exception:
 | |
|                 print(exception)
 | |
|                 pass
 | |
|             if progress:
 | |
|                 progress.update(1)
 | |
|     else:
 | |
|         for temp_frame_path in temp_frame_paths:
 | |
|             temp_frame = cv2.imread(temp_frame_path)
 | |
|             try:
 | |
|                 result = process_frame_v2(temp_frame, temp_frame_path)
 | |
|                 cv2.imwrite(temp_frame_path, result)
 | |
|             except Exception as exception:
 | |
|                 print(exception)
 | |
|                 pass
 | |
|             if progress:
 | |
|                 progress.update(1)
 | |
| 
 | |
| 
 | |
| def process_image(source_path: str, target_path: str, output_path: str) -> None:
 | |
|     if not modules.globals.map_faces:
 | |
|         source_face = get_one_face(cv2.imread(source_path))
 | |
|         target_frame = cv2.imread(target_path)
 | |
|         result = process_frame(source_face, target_frame)
 | |
|         cv2.imwrite(output_path, result)
 | |
|     else:
 | |
|         if modules.globals.many_faces:
 | |
|             update_status(
 | |
|                 "Many faces enabled. Using first source image. Progressing...", NAME
 | |
|             )
 | |
|         target_frame = cv2.imread(output_path)
 | |
|         result = process_frame_v2(target_frame)
 | |
|         cv2.imwrite(output_path, result)
 | |
| 
 | |
| 
 | |
| def process_video(source_path: str, temp_frame_paths: List[str]) -> None:
 | |
|     if modules.globals.map_faces and modules.globals.many_faces:
 | |
|         update_status(
 | |
|             "Many faces enabled. Using first source image. Progressing...", NAME
 | |
|         )
 | |
|     modules.processors.frame.core.process_video(
 | |
|         source_path, temp_frame_paths, process_frames
 | |
|     )
 | |
| 
 | |
| 
 | |
| def create_lower_mouth_mask(
 | |
|     face: Face, frame: Frame
 | |
| ) -> (np.ndarray, np.ndarray, tuple, np.ndarray):
 | |
|     mask = np.zeros(frame.shape[:2], dtype=np.uint8)
 | |
|     mouth_cutout = None
 | |
|     landmarks = face.landmark_2d_106
 | |
|     if landmarks is not None:
 | |
|         #                  0  1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18 19 20
 | |
|         lower_lip_order = [
 | |
|             65,
 | |
|             66,
 | |
|             62,
 | |
|             70,
 | |
|             69,
 | |
|             18,
 | |
|             19,
 | |
|             20,
 | |
|             21,
 | |
|             22,
 | |
|             23,
 | |
|             24,
 | |
|             0,
 | |
|             8,
 | |
|             7,
 | |
|             6,
 | |
|             5,
 | |
|             4,
 | |
|             3,
 | |
|             2,
 | |
|             65,
 | |
|         ]
 | |
|         lower_lip_landmarks = landmarks[lower_lip_order].astype(
 | |
|             np.float32
 | |
|         )  # Use float for precise calculations
 | |
| 
 | |
|         # Calculate the center of the landmarks
 | |
|         center = np.mean(lower_lip_landmarks, axis=0)
 | |
| 
 | |
|         # Expand the landmarks outward
 | |
|         expansion_factor = (
 | |
|             1 + modules.globals.mask_down_size
 | |
|         )  # Adjust this for more or less expansion
 | |
|         expanded_landmarks = (lower_lip_landmarks - center) * expansion_factor + center
 | |
| 
 | |
|         # Extend the top lip part
 | |
|         toplip_indices = [
 | |
|             20,
 | |
|             0,
 | |
|             1,
 | |
|             2,
 | |
|             3,
 | |
|             4,
 | |
|             5,
 | |
|         ]  # Indices for landmarks 2, 65, 66, 62, 70, 69, 18
 | |
|         toplip_extension = (
 | |
|             modules.globals.mask_size * 0.5
 | |
|         )  # Adjust this factor to control the extension
 | |
|         for idx in toplip_indices:
 | |
|             direction = expanded_landmarks[idx] - center
 | |
|             direction = direction / np.linalg.norm(direction)
 | |
|             expanded_landmarks[idx] += direction * toplip_extension
 | |
| 
 | |
|         # Extend the bottom part (chin area)
 | |
|         chin_indices = [
 | |
|             11,
 | |
|             12,
 | |
|             13,
 | |
|             14,
 | |
|             15,
 | |
|             16,
 | |
|         ]  # Indices for landmarks 21, 22, 23, 24, 0, 8
 | |
|         chin_extension = 2 * 0.2  # Adjust this factor to control the extension
 | |
|         for idx in chin_indices:
 | |
|             expanded_landmarks[idx][1] += (
 | |
|                 expanded_landmarks[idx][1] - center[1]
 | |
|             ) * chin_extension
 | |
| 
 | |
|         # Convert back to integer coordinates
 | |
|         expanded_landmarks = expanded_landmarks.astype(np.int32)
 | |
| 
 | |
|         # Calculate bounding box for the expanded lower mouth
 | |
|         min_x, min_y = np.min(expanded_landmarks, axis=0)
 | |
|         max_x, max_y = np.max(expanded_landmarks, axis=0)
 | |
| 
 | |
|         # Add some padding to the bounding box
 | |
|         padding = int((max_x - min_x) * 0.1)  # 10% padding
 | |
|         min_x = max(0, min_x - padding)
 | |
|         min_y = max(0, min_y - padding)
 | |
|         max_x = min(frame.shape[1], max_x + padding)
 | |
|         max_y = min(frame.shape[0], max_y + padding)
 | |
| 
 | |
|         # Ensure the bounding box dimensions are valid
 | |
|         if max_x <= min_x or max_y <= min_y:
 | |
|             if (max_x - min_x) <= 1:
 | |
|                 max_x = min_x + 1
 | |
|             if (max_y - min_y) <= 1:
 | |
|                 max_y = min_y + 1
 | |
| 
 | |
|         # Create the mask
 | |
|         mask_roi = np.zeros((max_y - min_y, max_x - min_x), dtype=np.uint8)
 | |
|         cv2.fillPoly(mask_roi, [expanded_landmarks - [min_x, min_y]], 255)
 | |
| 
 | |
|         # Apply Gaussian blur to soften the mask edges
 | |
|         mask_roi = cv2.GaussianBlur(mask_roi, (15, 15), 5)
 | |
| 
 | |
|         # Place the mask ROI in the full-sized mask
 | |
|         mask[min_y:max_y, min_x:max_x] = mask_roi
 | |
| 
 | |
|         # Extract the masked area from the frame
 | |
|         mouth_cutout = frame[min_y:max_y, min_x:max_x].copy()
 | |
| 
 | |
|         # Return the expanded lower lip polygon in original frame coordinates
 | |
|         lower_lip_polygon = expanded_landmarks
 | |
| 
 | |
|     return mask, mouth_cutout, (min_x, min_y, max_x, max_y), lower_lip_polygon
 | |
| 
 | |
| 
 | |
| def draw_mouth_mask_visualization(
 | |
|     frame: Frame, face: Face, mouth_mask_data: tuple
 | |
| ) -> Frame:
 | |
|     landmarks = face.landmark_2d_106
 | |
|     if landmarks is not None and mouth_mask_data is not None:
 | |
|         mask, mouth_cutout, (min_x, min_y, max_x, max_y), lower_lip_polygon = (
 | |
|             mouth_mask_data
 | |
|         )
 | |
| 
 | |
|         vis_frame = frame.copy()
 | |
| 
 | |
|         # Ensure coordinates are within frame bounds
 | |
|         height, width = vis_frame.shape[:2]
 | |
|         min_x, min_y = max(0, min_x), max(0, min_y)
 | |
|         max_x, max_y = min(width, max_x), min(height, max_y)
 | |
| 
 | |
|         # Adjust mask to match the region size
 | |
|         mask_region = mask[0 : max_y - min_y, 0 : max_x - min_x]
 | |
| 
 | |
|         # Remove the color mask overlay
 | |
|         # color_mask = cv2.applyColorMap((mask_region * 255).astype(np.uint8), cv2.COLORMAP_JET)
 | |
| 
 | |
|         # Ensure shapes match before blending
 | |
|         vis_region = vis_frame[min_y:max_y, min_x:max_x]
 | |
|         # Remove blending with color_mask
 | |
|         # if vis_region.shape[:2] == color_mask.shape[:2]:
 | |
|         #     blended = cv2.addWeighted(vis_region, 0.7, color_mask, 0.3, 0)
 | |
|         #     vis_frame[min_y:max_y, min_x:max_x] = blended
 | |
| 
 | |
|         # Draw the lower lip polygon
 | |
|         cv2.polylines(vis_frame, [lower_lip_polygon], True, (0, 255, 0), 2)
 | |
| 
 | |
|         # Remove the red box
 | |
|         # cv2.rectangle(vis_frame, (min_x, min_y), (max_x, max_y), (0, 0, 255), 2)
 | |
| 
 | |
|         # Visualize the feathered mask
 | |
|         feather_amount = max(
 | |
|             1,
 | |
|             min(
 | |
|                 30,
 | |
|                 (max_x - min_x) // modules.globals.mask_feather_ratio,
 | |
|                 (max_y - min_y) // modules.globals.mask_feather_ratio,
 | |
|             ),
 | |
|         )
 | |
|         # Ensure kernel size is odd
 | |
|         kernel_size = 2 * feather_amount + 1
 | |
|         feathered_mask = cv2.GaussianBlur(
 | |
|             mask_region.astype(float), (kernel_size, kernel_size), 0
 | |
|         )
 | |
|         feathered_mask = (feathered_mask / feathered_mask.max() * 255).astype(np.uint8)
 | |
|         # Remove the feathered mask color overlay
 | |
|         # color_feathered_mask = cv2.applyColorMap(feathered_mask, cv2.COLORMAP_VIRIDIS)
 | |
| 
 | |
|         # Ensure shapes match before blending feathered mask
 | |
|         # if vis_region.shape == color_feathered_mask.shape:
 | |
|         #     blended_feathered = cv2.addWeighted(vis_region, 0.7, color_feathered_mask, 0.3, 0)
 | |
|         #     vis_frame[min_y:max_y, min_x:max_x] = blended_feathered
 | |
| 
 | |
|         # Add labels
 | |
|         cv2.putText(
 | |
|             vis_frame,
 | |
|             "Lower Mouth Mask",
 | |
|             (min_x, min_y - 10),
 | |
|             cv2.FONT_HERSHEY_SIMPLEX,
 | |
|             0.5,
 | |
|             (255, 255, 255),
 | |
|             1,
 | |
|         )
 | |
|         cv2.putText(
 | |
|             vis_frame,
 | |
|             "Feathered Mask",
 | |
|             (min_x, max_y + 20),
 | |
|             cv2.FONT_HERSHEY_SIMPLEX,
 | |
|             0.5,
 | |
|             (255, 255, 255),
 | |
|             1,
 | |
|         )
 | |
| 
 | |
|         return vis_frame
 | |
|     return frame
 | |
| 
 | |
| 
 | |
| def apply_mouth_area(
 | |
|     frame: np.ndarray,
 | |
|     mouth_cutout: np.ndarray,
 | |
|     mouth_box: tuple,
 | |
|     face_mask: np.ndarray,
 | |
|     mouth_polygon: np.ndarray,
 | |
| ) -> np.ndarray:
 | |
|     min_x, min_y, max_x, max_y = mouth_box
 | |
|     box_width = max_x - min_x
 | |
|     box_height = max_y - min_y
 | |
| 
 | |
|     if (
 | |
|         mouth_cutout is None
 | |
|         or box_width is None
 | |
|         or box_height is None
 | |
|         or face_mask is None
 | |
|         or mouth_polygon is None
 | |
|     ):
 | |
|         return frame
 | |
| 
 | |
|     try:
 | |
|         resized_mouth_cutout = cv2.resize(mouth_cutout, (box_width, box_height))
 | |
|         roi = frame[min_y:max_y, min_x:max_x]
 | |
| 
 | |
|         if roi.shape != resized_mouth_cutout.shape:
 | |
|             resized_mouth_cutout = cv2.resize(
 | |
|                 resized_mouth_cutout, (roi.shape[1], roi.shape[0])
 | |
|             )
 | |
| 
 | |
|         color_corrected_mouth = apply_color_transfer(resized_mouth_cutout, roi)
 | |
| 
 | |
|         # Use the provided mouth polygon to create the mask
 | |
|         polygon_mask = np.zeros(roi.shape[:2], dtype=np.uint8)
 | |
|         adjusted_polygon = mouth_polygon - [min_x, min_y]
 | |
|         cv2.fillPoly(polygon_mask, [adjusted_polygon], 255)
 | |
| 
 | |
|         # Apply feathering to the polygon mask
 | |
|         feather_amount = min(
 | |
|             30,
 | |
|             box_width // modules.globals.mask_feather_ratio,
 | |
|             box_height // modules.globals.mask_feather_ratio,
 | |
|         )
 | |
|         feathered_mask = cv2.GaussianBlur(
 | |
|             polygon_mask.astype(float), (0, 0), feather_amount
 | |
|         )
 | |
|         feathered_mask = feathered_mask / feathered_mask.max()
 | |
| 
 | |
|         face_mask_roi = face_mask[min_y:max_y, min_x:max_x]
 | |
|         combined_mask = feathered_mask * (face_mask_roi / 255.0)
 | |
| 
 | |
|         combined_mask = combined_mask[:, :, np.newaxis]
 | |
|         blended = (
 | |
|             color_corrected_mouth * combined_mask + roi * (1 - combined_mask)
 | |
|         ).astype(np.uint8)
 | |
| 
 | |
|         # Apply face mask to blended result
 | |
|         face_mask_3channel = (
 | |
|             np.repeat(face_mask_roi[:, :, np.newaxis], 3, axis=2) / 255.0
 | |
|         )
 | |
|         final_blend = blended * face_mask_3channel + roi * (1 - face_mask_3channel)
 | |
| 
 | |
|         frame[min_y:max_y, min_x:max_x] = final_blend.astype(np.uint8)
 | |
|     except Exception as e:
 | |
|         pass
 | |
| 
 | |
|     return frame
 | |
| 
 | |
| 
 | |
| def create_face_mask(face: Face, frame: Frame) -> np.ndarray:
 | |
|     mask = np.zeros(frame.shape[:2], dtype=np.uint8)
 | |
|     landmarks = face.landmark_2d_106
 | |
|     if landmarks is not None:
 | |
|         # Convert landmarks to int32
 | |
|         landmarks = landmarks.astype(np.int32)
 | |
| 
 | |
|         # Extract facial features
 | |
|         right_side_face = landmarks[0:16]
 | |
|         left_side_face = landmarks[17:32]
 | |
|         right_eye = landmarks[33:42]
 | |
|         right_eye_brow = landmarks[43:51]
 | |
|         left_eye = landmarks[87:96]
 | |
|         left_eye_brow = landmarks[97:105]
 | |
| 
 | |
|         # Calculate forehead extension
 | |
|         right_eyebrow_top = np.min(right_eye_brow[:, 1])
 | |
|         left_eyebrow_top = np.min(left_eye_brow[:, 1])
 | |
|         eyebrow_top = min(right_eyebrow_top, left_eyebrow_top)
 | |
| 
 | |
|         face_top = np.min([right_side_face[0, 1], left_side_face[-1, 1]])
 | |
|         forehead_height = face_top - eyebrow_top
 | |
|         extended_forehead_height = int(forehead_height * 5.0)  # Extend by 50%
 | |
| 
 | |
|         # Create forehead points
 | |
|         forehead_left = right_side_face[0].copy()
 | |
|         forehead_right = left_side_face[-1].copy()
 | |
|         forehead_left[1] -= extended_forehead_height
 | |
|         forehead_right[1] -= extended_forehead_height
 | |
| 
 | |
|         # Combine all points to create the face outline
 | |
|         face_outline = np.vstack(
 | |
|             [
 | |
|                 [forehead_left],
 | |
|                 right_side_face,
 | |
|                 left_side_face[
 | |
|                     ::-1
 | |
|                 ],  # Reverse left side to create a continuous outline
 | |
|                 [forehead_right],
 | |
|             ]
 | |
|         )
 | |
| 
 | |
|         # Calculate padding
 | |
|         padding = int(
 | |
|             np.linalg.norm(right_side_face[0] - left_side_face[-1]) * 0.05
 | |
|         )  # 5% of face width
 | |
| 
 | |
|         # Create a slightly larger convex hull for padding
 | |
|         hull = cv2.convexHull(face_outline)
 | |
|         hull_padded = []
 | |
|         for point in hull:
 | |
|             x, y = point[0]
 | |
|             center = np.mean(face_outline, axis=0)
 | |
|             direction = np.array([x, y]) - center
 | |
|             direction = direction / np.linalg.norm(direction)
 | |
|             padded_point = np.array([x, y]) + direction * padding
 | |
|             hull_padded.append(padded_point)
 | |
| 
 | |
|         hull_padded = np.array(hull_padded, dtype=np.int32)
 | |
| 
 | |
|         # Fill the padded convex hull
 | |
|         cv2.fillConvexPoly(mask, hull_padded, 255)
 | |
| 
 | |
|         # Smooth the mask edges
 | |
|         mask = cv2.GaussianBlur(mask, (5, 5), 3)
 | |
| 
 | |
|     return mask
 | |
| 
 | |
| 
 | |
| def apply_color_transfer(source, target):
 | |
|     """
 | |
|     Apply color transfer from target to source image
 | |
|     """
 | |
|     source = cv2.cvtColor(source, cv2.COLOR_BGR2LAB).astype("float32")
 | |
|     target = cv2.cvtColor(target, cv2.COLOR_BGR2LAB).astype("float32")
 | |
| 
 | |
|     source_mean, source_std = cv2.meanStdDev(source)
 | |
|     target_mean, target_std = cv2.meanStdDev(target)
 | |
| 
 | |
|     # Reshape mean and std to be broadcastable
 | |
|     source_mean = source_mean.reshape(1, 1, 3)
 | |
|     source_std = source_std.reshape(1, 1, 3)
 | |
|     target_mean = target_mean.reshape(1, 1, 3)
 | |
|     target_std = target_std.reshape(1, 1, 3)
 | |
| 
 | |
|     # Perform the color transfer
 | |
|     source = (source - source_mean) * (target_std / source_std) + target_mean
 | |
| 
 | |
|     return cv2.cvtColor(np.clip(source, 0, 255).astype("uint8"), cv2.COLOR_LAB2BGR)
 |