Deep-Live-Cam/modules/core.py

352 lines
17 KiB
Python

import os
import sys
# single thread doubles cuda performance - needs to be set before torch import
if any(arg.startswith('--execution-provider') for arg in sys.argv):
os.environ['OMP_NUM_THREADS'] = '1'
# reduce tensorflow log level
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
import warnings
from typing import List
import platform
import signal
import shutil
import argparse
import torch
import onnxruntime
import tensorflow
import modules.globals
import modules.metadata
import modules.ui as ui
from modules.processors.frame.core import get_frame_processors_modules
from modules.utilities import has_image_extension, is_image, is_video, detect_fps, create_video, extract_frames, get_temp_frame_paths, restore_audio, create_temp, move_temp, clean_temp, normalize_output_path
if 'ROCMExecutionProvider' in modules.globals.execution_providers:
del torch
warnings.filterwarnings('ignore', category=FutureWarning, module='insightface')
warnings.filterwarnings('ignore', category=UserWarning, module='torchvision')
def parse_args() -> None:
signal.signal(signal.SIGINT, lambda signal_number, frame: destroy())
program = argparse.ArgumentParser()
program.add_argument('-s', '--source', help='select an source image', dest='source_path')
program.add_argument('-t', '--target', help='select an target image or video', dest='target_path')
program.add_argument('-o', '--output', help='select output file or directory', dest='output_path')
program.add_argument('--frame-processor', help='pipeline of frame processors', dest='frame_processor', default=['face_swapper'], choices=['face_swapper', 'face_enhancer'], nargs='+')
program.add_argument('--keep-fps', help='keep original fps', dest='keep_fps', action='store_true', default=False)
program.add_argument('--keep-audio', help='keep original audio', dest='keep_audio', action='store_true', default=True)
program.add_argument('--keep-frames', help='keep temporary frames', dest='keep_frames', action='store_true', default=False)
program.add_argument('--many-faces', help='process every face', dest='many_faces', action='store_true', default=False)
program.add_argument('--nsfw-filter', help='filter the NSFW image or video', dest='nsfw_filter', action='store_true', default=False)
program.add_argument('--map-faces', help='map source target faces', dest='map_faces', action='store_true', default=False)
program.add_argument('--mouth-mask', help='mask the mouth region', dest='mouth_mask', action='store_true', default=False)
program.add_argument('--video-encoder', help='adjust output video encoder', dest='video_encoder', default='libx264', choices=['libx264', 'libx265', 'libvpx-vp9'])
program.add_argument('--video-quality', help='adjust output video quality', dest='video_quality', type=int, default=18, choices=range(52), metavar='[0-51]')
program.add_argument('-l', '--lang', help='Ui language', default="en")
program.add_argument('--live-mirror', help='The live camera display as you see it in the front-facing camera frame', dest='live_mirror', action='store_true', default=False)
program.add_argument('--live-resizable', help='The live camera frame is resizable', dest='live_resizable', action='store_true', default=False)
program.add_argument('--max-memory', help='maximum amount of RAM in GB', dest='max_memory', type=int, default=suggest_max_memory())
program.add_argument('--execution-provider', help='execution provider', dest='execution_provider', default=['cpu'], choices=suggest_execution_providers(), nargs='+')
program.add_argument('--execution-threads', help='number of execution threads', dest='execution_threads', type=int, default=suggest_execution_threads())
program.add_argument('-v', '--version', action='version', version=f'{modules.metadata.name} {modules.metadata.version}')
# register deprecated args
program.add_argument('-f', '--face', help=argparse.SUPPRESS, dest='source_path_deprecated')
program.add_argument('--cpu-cores', help=argparse.SUPPRESS, dest='cpu_cores_deprecated', type=int)
program.add_argument('--gpu-vendor', help=argparse.SUPPRESS, dest='gpu_vendor_deprecated')
program.add_argument('--gpu-threads', help=argparse.SUPPRESS, dest='gpu_threads_deprecated', type=int)
args = program.parse_args()
modules.globals.source_path = args.source_path
modules.globals.target_path = args.target_path
modules.globals.output_path = normalize_output_path(modules.globals.source_path, modules.globals.target_path, args.output_path)
modules.globals.frame_processors = args.frame_processor
modules.globals.headless = args.source_path or args.target_path or args.output_path
modules.globals.keep_fps = args.keep_fps
modules.globals.keep_audio = args.keep_audio
modules.globals.keep_frames = args.keep_frames
modules.globals.many_faces = args.many_faces
modules.globals.mouth_mask = args.mouth_mask
modules.globals.nsfw_filter = args.nsfw_filter
modules.globals.map_faces = args.map_faces
modules.globals.video_encoder = args.video_encoder
modules.globals.video_quality = args.video_quality
modules.globals.live_mirror = args.live_mirror
modules.globals.live_resizable = args.live_resizable
modules.globals.max_memory = args.max_memory
modules.globals.execution_providers = decode_execution_providers(args.execution_provider)
modules.globals.execution_threads = args.execution_threads
modules.globals.lang = args.lang
#for ENHANCER tumbler:
if 'face_enhancer' in args.frame_processor:
modules.globals.fp_ui['face_enhancer'] = True
else:
modules.globals.fp_ui['face_enhancer'] = False
# translate deprecated args
if args.source_path_deprecated:
print('\033[33mArgument -f and --face are deprecated. Use -s and --source instead.\033[0m')
modules.globals.source_path = args.source_path_deprecated
modules.globals.output_path = normalize_output_path(args.source_path_deprecated, modules.globals.target_path, args.output_path)
if args.cpu_cores_deprecated:
print('\033[33mArgument --cpu-cores is deprecated. Use --execution-threads instead.\033[0m')
modules.globals.execution_threads = args.cpu_cores_deprecated
if args.gpu_vendor_deprecated == 'apple':
print('\033[33mArgument --gpu-vendor apple is deprecated. Use --execution-provider coreml instead.\033[0m')
modules.globals.execution_providers = decode_execution_providers(['coreml'])
if args.gpu_vendor_deprecated == 'nvidia':
print('\033[33mArgument --gpu-vendor nvidia is deprecated. Use --execution-provider cuda instead.\033[0m')
modules.globals.execution_providers = decode_execution_providers(['cuda'])
if args.gpu_vendor_deprecated == 'amd':
print('\033[33mArgument --gpu-vendor amd is deprecated. Use --execution-provider cuda instead.\033[0m')
modules.globals.execution_providers = decode_execution_providers(['rocm'])
if args.gpu_threads_deprecated:
print('\033[33mArgument --gpu-threads is deprecated. Use --execution-threads instead.\033[0m')
modules.globals.execution_threads = args.gpu_threads_deprecated
def encode_execution_providers(execution_providers: List[str]) -> List[str]:
return [execution_provider.replace('ExecutionProvider', '').lower() for execution_provider in execution_providers]
def decode_execution_providers(execution_providers: List[str]) -> List[str]:
try:
available_providers = onnxruntime.get_available_providers()
encoded_available_providers = encode_execution_providers(available_providers)
selected_providers = []
unavailable_providers = []
for execution_provider in execution_providers:
provider_found = False
for provider, encoded_provider in zip(available_providers, encoded_available_providers):
if execution_provider in encoded_provider:
selected_providers.append(provider)
provider_found = True
break
if not provider_found:
unavailable_providers.append(execution_provider)
if 'cuda' in [p.lower() for p in unavailable_providers]:
# CUDA was requested but not available
cuda_path = os.environ.get('CUDA_PATH')
if cuda_path:
update_status(f"Warning: CUDA_PATH is set ({cuda_path}) but CUDA wasn't able to be loaded. Check your CUDA installation.", "DLC.CORE")
if os.path.exists(cuda_path):
# CUDA path exists but couldn't be loaded - likely missing DLLs or incorrect configuration
update_status("CUDA path exists but CUDA libraries couldn't be loaded. Check if the CUDA runtime is properly installed.", "DLC.CORE")
else:
update_status("CUDA_PATH is set but the directory doesn't exist. Check your environment variables.", "DLC.CORE")
else:
update_status("CUDA was requested but no CUDA_PATH is set in environment variables.", "DLC.CORE")
# If no providers were selected, fall back to CPU
if not selected_providers:
update_status("Falling back to CPU execution provider.", "DLC.CORE")
selected_providers = ['CPUExecutionProvider']
return selected_providers
except Exception as e:
update_status(f"Error determining execution providers: {str(e)}. Falling back to CPU.", "DLC.CORE")
return ['CPUExecutionProvider']
def suggest_max_memory() -> int:
if platform.system().lower() == 'darwin':
return 4
return 16
def suggest_execution_providers() -> List[str]:
return encode_execution_providers(onnxruntime.get_available_providers())
def suggest_execution_threads() -> int:
if 'DmlExecutionProvider' in modules.globals.execution_providers:
return 1
if 'ROCMExecutionProvider' in modules.globals.execution_providers:
return 1
return 8
def limit_resources() -> None:
# prevent tensorflow memory leak
gpus = tensorflow.config.experimental.list_physical_devices('GPU')
for gpu in gpus:
tensorflow.config.experimental.set_memory_growth(gpu, True)
# limit memory usage
if modules.globals.max_memory:
memory = modules.globals.max_memory * 1024 ** 3
if platform.system().lower() == 'darwin':
memory = modules.globals.max_memory * 1024 ** 6
if platform.system().lower() == 'windows':
import ctypes
kernel32 = ctypes.windll.kernel32
kernel32.SetProcessWorkingSetSize(-1, ctypes.c_size_t(memory), ctypes.c_size_t(memory))
else:
import resource
resource.setrlimit(resource.RLIMIT_DATA, (memory, memory))
def release_resources() -> None:
if 'CUDAExecutionProvider' in modules.globals.execution_providers:
torch.cuda.empty_cache()
def check_cuda_configuration() -> None:
"""
Check CUDA configuration and provide diagnostic information.
This helps users identify issues with their CUDA setup.
"""
if 'cuda' in [p.lower() for p in encode_execution_providers(modules.globals.execution_providers)]:
update_status("CUDA execution provider requested, checking configuration...", "DLC.CUDA")
# Check for CUDA environment variables
cuda_path = os.environ.get('CUDA_PATH')
if cuda_path:
update_status(f"CUDA_PATH is set to: {cuda_path}", "DLC.CUDA")
# Check if the directory exists
if os.path.exists(cuda_path):
update_status("CUDA_PATH directory exists", "DLC.CUDA")
# Check for critical CUDA DLLs on Windows
if platform.system().lower() == 'windows':
cuda_dll_path = os.path.join(cuda_path, 'bin', 'cudart64_*.dll')
import glob
cuda_dlls = glob.glob(cuda_dll_path)
if cuda_dlls:
update_status(f"CUDA Runtime DLLs found: {', '.join(os.path.basename(dll) for dll in cuda_dlls)}", "DLC.CUDA")
else:
update_status("Warning: No CUDA Runtime DLLs found in CUDA_PATH/bin", "DLC.CUDA")
update_status("This may cause CUDA initialization failures", "DLC.CUDA")
else:
update_status("Warning: CUDA_PATH is set but directory doesn't exist", "DLC.CUDA")
else:
update_status("Warning: CUDA_PATH environment variable is not set", "DLC.CUDA")
# Check if CUDA is in PATH
path_env = os.environ.get('PATH', '')
if cuda_path and cuda_path + '\\bin' in path_env:
update_status("CUDA bin directory is in PATH", "DLC.CUDA")
else:
update_status("Warning: CUDA bin directory not found in PATH", "DLC.CUDA")
update_status("This may prevent CUDA libraries from being found", "DLC.CUDA")
# Try CUDA provider availability directly from onnxruntime
available_providers = onnxruntime.get_available_providers()
if 'CUDAExecutionProvider' in available_providers:
update_status("CUDA provider is available in ONNX Runtime", "DLC.CUDA")
else:
update_status("Warning: CUDA provider is not available in ONNX Runtime", "DLC.CUDA")
update_status("Available providers: " + ', '.join(available_providers), "DLC.CUDA")
def pre_check() -> bool:
if sys.version_info < (3, 9):
update_status('Python version is not supported - please upgrade to 3.9 or higher.')
return False
if not shutil.which('ffmpeg'):
update_status('ffmpeg is not installed.')
return False
# Check CUDA configuration if requested
check_cuda_configuration()
return True
def update_status(message: str, scope: str = 'DLC.CORE') -> None:
print(f'[{scope}] {message}')
if not modules.globals.headless:
ui.update_status(message)
def start() -> None:
for frame_processor in get_frame_processors_modules(modules.globals.frame_processors):
if not frame_processor.pre_start():
return
update_status('Processing...')
# process image to image
if has_image_extension(modules.globals.target_path):
if modules.globals.nsfw_filter and ui.check_and_ignore_nsfw(modules.globals.target_path, destroy):
return
try:
shutil.copy2(modules.globals.target_path, modules.globals.output_path)
except Exception as e:
print("Error copying file:", str(e))
for frame_processor in get_frame_processors_modules(modules.globals.frame_processors):
update_status('Progressing...', frame_processor.NAME)
frame_processor.process_image(modules.globals.source_path, modules.globals.output_path, modules.globals.output_path)
release_resources()
if is_image(modules.globals.target_path):
update_status('Processing to image succeed!')
else:
update_status('Processing to image failed!')
return
# process image to videos
if modules.globals.nsfw_filter and ui.check_and_ignore_nsfw(modules.globals.target_path, destroy):
return
if not modules.globals.map_faces:
update_status('Creating temp resources...')
create_temp(modules.globals.target_path)
update_status('Extracting frames...')
extract_frames(modules.globals.target_path)
temp_frame_paths = get_temp_frame_paths(modules.globals.target_path)
for frame_processor in get_frame_processors_modules(modules.globals.frame_processors):
update_status('Progressing...', frame_processor.NAME)
frame_processor.process_video(modules.globals.source_path, temp_frame_paths)
release_resources()
# handles fps
if modules.globals.keep_fps:
update_status('Detecting fps...')
fps = detect_fps(modules.globals.target_path)
update_status(f'Creating video with {fps} fps...')
create_video(modules.globals.target_path, fps)
else:
update_status('Creating video with 30.0 fps...')
create_video(modules.globals.target_path)
# handle audio
if modules.globals.keep_audio:
if modules.globals.keep_fps:
update_status('Restoring audio...')
else:
update_status('Restoring audio might cause issues as fps are not kept...')
restore_audio(modules.globals.target_path, modules.globals.output_path)
else:
move_temp(modules.globals.target_path, modules.globals.output_path)
# clean and validate
clean_temp(modules.globals.target_path)
if is_video(modules.globals.target_path):
update_status('Processing to video succeed!')
else:
update_status('Processing to video failed!')
def destroy(to_quit=True) -> None:
if modules.globals.target_path:
clean_temp(modules.globals.target_path)
if to_quit: quit()
def run() -> None:
parse_args()
if not pre_check():
return
for frame_processor in get_frame_processors_modules(modules.globals.frame_processors):
if not frame_processor.pre_check():
return
limit_resources()
if modules.globals.headless:
start()
else:
window = ui.init(start, destroy, modules.globals.lang)
window.mainloop()