from typing import Any, List
import cv2
import insightface
import threading

import modules.globals
import modules.processors.frame.core
from modules.core import update_status
from modules.face_analyser import get_one_face, get_many_faces, default_source_face
from modules.typing import Face, Frame
from modules.utilities import conditional_download, resolve_relative_path, is_image, is_video
from modules.cluster_analysis import find_closest_centroid

FACE_SWAPPER = None
THREAD_LOCK = threading.Lock()
NAME = 'DLC.FACE-SWAPPER'


def pre_check() -> bool:
    download_directory_path = resolve_relative_path('../models')
    conditional_download(download_directory_path, ['https://huggingface.co/hacksider/deep-live-cam/blob/main/inswapper_128_fp16.onnx'])
    return True


def pre_start() -> bool:
    if not modules.globals.map_faces and not is_image(modules.globals.source_path):
        update_status('Select an image for source path.', NAME)
        return False
    elif not modules.globals.map_faces and not get_one_face(cv2.imread(modules.globals.source_path)):
        update_status('No face in source path detected.', NAME)
        return False
    if not is_image(modules.globals.target_path) and not is_video(modules.globals.target_path):
        update_status('Select an image or video for target path.', NAME)
        return False
    return True


def get_face_swapper() -> Any:
    global FACE_SWAPPER

    with THREAD_LOCK:
        if FACE_SWAPPER is None:
            model_path = resolve_relative_path('../models/inswapper_128_fp16.onnx')
            FACE_SWAPPER = insightface.model_zoo.get_model(model_path, providers=modules.globals.execution_providers)
    return FACE_SWAPPER


def swap_face(source_face: Face, target_face: Face, temp_frame: Frame) -> Frame:
    return get_face_swapper().get(temp_frame, target_face, source_face, paste_back=True)


def process_frame(source_face: Face, temp_frame: Frame) -> Frame:
    # Ensure the frame is in RGB format if color correction is enabled
    if modules.globals.color_correction:
        temp_frame = cv2.cvtColor(temp_frame, cv2.COLOR_BGR2RGB)
        
    if modules.globals.many_faces:
        many_faces = get_many_faces(temp_frame)
        if many_faces:
            for target_face in many_faces:
                temp_frame = swap_face(source_face, target_face, temp_frame)
    else:
        target_face = get_one_face(temp_frame)
        if target_face:
            temp_frame = swap_face(source_face, target_face, temp_frame)
    return temp_frame


def process_frame_v2(temp_frame: Frame, temp_frame_path: str = "") -> Frame:
    if is_image(modules.globals.target_path):
        if modules.globals.many_faces:
            source_face = default_source_face()
            for map in modules.globals.souce_target_map:
                target_face = map['target']['face']
                temp_frame = swap_face(source_face, target_face, temp_frame)

        elif not modules.globals.many_faces:
            for map in modules.globals.souce_target_map:
                if "source" in map:
                    source_face = map['source']['face']
                    target_face = map['target']['face']               
                    temp_frame = swap_face(source_face, target_face, temp_frame)

    elif is_video(modules.globals.target_path):
        if modules.globals.many_faces:
            source_face = default_source_face()
            for map in modules.globals.souce_target_map:
                target_frame = [f for f in map['target_faces_in_frame'] if f['location'] == temp_frame_path]

                for frame in target_frame:
                    for target_face in frame['faces']:
                        temp_frame = swap_face(source_face, target_face, temp_frame)

        elif not modules.globals.many_faces:
            for map in modules.globals.souce_target_map:
                if "source" in map:
                    target_frame = [f for f in map['target_faces_in_frame'] if f['location'] == temp_frame_path]
                    source_face = map['source']['face']

                    for frame in target_frame:
                        for target_face in frame['faces']:
                            temp_frame = swap_face(source_face, target_face, temp_frame)
    else:
        detected_faces = get_many_faces(temp_frame)
        if modules.globals.many_faces:
            if detected_faces:
                source_face = default_source_face()
                for target_face in detected_faces:
                    temp_frame = swap_face(source_face, target_face, temp_frame)

        elif not modules.globals.many_faces:
            if detected_faces:
                if len(detected_faces) <= len(modules.globals.simple_map['target_embeddings']):
                    for detected_face in detected_faces:
                        closest_centroid_index, _ = find_closest_centroid(modules.globals.simple_map['target_embeddings'], detected_face.normed_embedding)

                        temp_frame = swap_face(modules.globals.simple_map['source_faces'][closest_centroid_index], detected_face, temp_frame)
                else:
                    detected_faces_centroids = []
                    for face in detected_faces:
                            detected_faces_centroids.append(face.normed_embedding)
                    i = 0
                    for target_embedding in modules.globals.simple_map['target_embeddings']:
                        closest_centroid_index, _ = find_closest_centroid(detected_faces_centroids, target_embedding)

                        temp_frame = swap_face(modules.globals.simple_map['source_faces'][i], detected_faces[closest_centroid_index], temp_frame)
                        i += 1
    return temp_frame


def process_frames(source_path: str, temp_frame_paths: List[str], progress: Any = None) -> None:
    if not modules.globals.map_faces:
        source_face = get_one_face(cv2.imread(source_path))
        for temp_frame_path in temp_frame_paths:
            temp_frame = cv2.imread(temp_frame_path)
            try:
                result = process_frame(source_face, temp_frame)
                cv2.imwrite(temp_frame_path, result)
            except Exception as exception:
                print(exception)
                pass
            if progress:
                progress.update(1)
    else:
        for temp_frame_path in temp_frame_paths:
            temp_frame = cv2.imread(temp_frame_path)
            try:
                result = process_frame_v2(temp_frame, temp_frame_path)
                cv2.imwrite(temp_frame_path, result)
            except Exception as exception:
                print(exception)
                pass
            if progress:
                progress.update(1)


def process_image(source_path: str, target_path: str, output_path: str) -> None:
    if not modules.globals.map_faces:
        source_face = get_one_face(cv2.imread(source_path))
        target_frame = cv2.imread(target_path)
        result = process_frame(source_face, target_frame)
        cv2.imwrite(output_path, result)
    else:
        if modules.globals.many_faces:
            update_status('Many faces enabled. Using first source image. Progressing...', NAME)
        target_frame = cv2.imread(output_path)
        result = process_frame_v2(target_frame)
        cv2.imwrite(output_path, result)


def process_video(source_path: str, temp_frame_paths: List[str]) -> None:
    if modules.globals.map_faces and modules.globals.many_faces:
        update_status('Many faces enabled. Using first source image. Progressing...', NAME)
    modules.processors.frame.core.process_video(source_path, temp_frame_paths, process_frames)