from typing import Any, List
import cv2
import threading
import gfpgan
import os

import modules.globals
import modules.processors.frame.core
from modules.core import update_status
from modules.face_analyser import get_one_face
from modules.typing import Frame, Face
from modules.utilities import (
    conditional_download,
    is_image,
    is_video,
)

FACE_ENHANCER = None
THREAD_SEMAPHORE = threading.Semaphore()
THREAD_LOCK = threading.Lock()
NAME = "DLC.FACE-ENHANCER"

abs_dir = os.path.dirname(os.path.abspath(__file__))
models_dir = os.path.join(os.path.dirname(os.path.dirname(os.path.dirname(abs_dir))), 'models')

def pre_check() -> bool:
    download_directory_path = models_dir
    conditional_download(
        download_directory_path,
        [
            "https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/GFPGANv1.4.pth"
        ],
    )
    return True


def pre_start() -> bool:
    if not is_image(modules.globals.target_path) and not is_video(
        modules.globals.target_path
    ):
        update_status("Select an image or video for target path.", NAME)
        return False
    return True


def get_face_enhancer() -> Any:
    global FACE_ENHANCER

    with THREAD_LOCK:
        if FACE_ENHANCER is None:
            model_path = os.path.join(models_dir, 'GFPGANv1.4.pth')
            FACE_ENHANCER = gfpgan.GFPGANer(model_path=model_path, upscale=1)  # type: ignore[attr-defined]
    return FACE_ENHANCER


def enhance_face(temp_frame: Frame) -> Frame:
    with THREAD_SEMAPHORE:
        _, _, temp_frame = get_face_enhancer().enhance(temp_frame, paste_back=True)
    return temp_frame


def process_frame(source_face: Face, temp_frame: Frame) -> Frame:
    target_face = get_one_face(temp_frame)
    if target_face:
        temp_frame = enhance_face(temp_frame)
    return temp_frame


def process_frames(
    source_path: str, temp_frame_paths: List[str], progress: Any = None
) -> None:
    for temp_frame_path in temp_frame_paths:
        temp_frame = cv2.imread(temp_frame_path)
        result = process_frame(None, temp_frame)
        cv2.imwrite(temp_frame_path, result)
        if progress:
            progress.update(1)


def process_image(source_path: str, target_path: str, output_path: str) -> None:
    target_frame = cv2.imread(target_path)
    result = process_frame(None, target_frame)
    cv2.imwrite(output_path, result)


def process_video(source_path: str, temp_frame_paths: List[str]) -> None:
    modules.processors.frame.core.process_video(None, temp_frame_paths, process_frames)


def process_frame_v2(temp_frame: Frame) -> Frame:
    target_face = get_one_face(temp_frame)
    if target_face:
        temp_frame = enhance_face(temp_frame)
    return temp_frame