Compare commits

...

36 Commits

Author SHA1 Message Date
dependabot[bot] 505bffabfa
Merge 31f437ff79 into 08b7d56b47 2024-09-13 16:00:42 +07:00
Kenneth Estanislao 08b7d56b47
Update README.md 2024-09-13 16:57:46 +08:00
Kenneth Estanislao 969c8796d5
Update README.md 2024-09-13 16:57:09 +08:00
Kenneth Estanislao 0d8fe7f930 Merge branch 'main' of https://github.com/hacksider/Deep-Live-Cam 2024-09-13 16:53:16 +08:00
Kenneth Estanislao 7be92ac3e5 Update face_mapping2.png 2024-09-13 16:52:59 +08:00
Kenneth Estanislao 24414e8d75
Update README.md 2024-09-13 16:40:45 +08:00
Kenneth Estanislao c6309136ad
Update README.md 2024-09-13 16:39:34 +08:00
Kenneth Estanislao cec588f1c1
Update README.md
added features
2024-09-13 16:38:47 +08:00
Kenneth Estanislao e899707542 facemapping data
demo data for facemapping
2024-09-13 16:30:44 +08:00
Kenneth Estanislao 336ce2d0d6
Update README.md 2024-09-13 15:49:03 +08:00
Kenneth Estanislao 3f58bdc714 Create resizable.gif 2024-09-13 15:48:47 +08:00
Kenneth Estanislao a2d2f20b5a
Update README.md 2024-09-13 14:27:22 +08:00
Kenneth Estanislao 1415493327
Update README.md 2024-09-13 14:16:28 +08:00
Kenneth Estanislao c8851038fa
Update README.md 2024-09-13 14:15:51 +08:00
Kenneth Estanislao e74b6ebe42
Update README.md
completed multiple face feature, thanks to @pereiraroland26 for this
2024-09-13 14:12:45 +08:00
Kenneth Estanislao b2fa95e2fc
Merge pull request #572 from pereiraroland26/main
Updates to multiple face support (webcam scenario)
2024-09-12 22:27:07 +08:00
Roland Pereira f133d48f60 handled webcam scenario where detected faces are greater than maps provided 2024-09-11 21:42:38 +05:30
Kenneth Estanislao e1a01cfba2
Merge pull request #568 from cyf1r3/main
Update README.md
2024-09-11 13:24:10 +08:00
Anant Singh 06e5e76797
Update README.md
Changed the keyword 'roop' to 'Deep-Live-Cam'.
2024-09-11 10:37:11 +05:30
Kenneth Estanislao 16c1b44927 Revert "recommit webcam option"
This reverts commit 49d3f9a3cc.
2024-09-11 02:49:53 +08:00
Kenneth Estanislao 229375465d
Update README.md
added some credits
2024-09-11 00:05:06 +08:00
Kenneth Estanislao 49d3f9a3cc recommit webcam option 2024-09-11 00:02:45 +08:00
Kenneth Estanislao 39238ee80f
Merge pull request #566 from pereiraroland26/main
Added support for multiple faces
2024-09-10 23:35:19 +08:00
Roland Pereira d7c6226eb7 updated button widths on popup 2024-09-10 18:53:25 +05:30
Roland Pereira eb140e59c2 commiting gitignore 2024-09-10 16:00:24 +05:30
pereiraroland26 f122006024 updated README.md and created variables for pop dimensions 2024-09-10 14:28:33 +05:30
Roland Pereira 0a144ec57f
Merge branch 'hacksider:main' into main 2024-09-10 13:48:40 +05:30
Kenneth Estanislao 9acf77b6ed Revert "Merge pull request #556 from Highpressure/main"
This reverts commit fd07185043, reversing
changes made to f762b61a12.
2024-09-10 14:59:05 +08:00
Kenneth Estanislao fd07185043
Merge pull request #556 from Highpressure/main
multi camera device support
2024-09-10 13:47:43 +08:00
pereiraroland26 da3498c36f Merge branch 'main' of https://github.com/pereiraroland26/Deep-Live-Cam_v2.0 2024-09-10 05:41:46 +05:30
pereiraroland26@gmail.com 53fc65ca7c Added ability to map faces 2024-09-10 05:40:55 +05:30
james 397c84fa8b Added ability to map faces 2024-09-10 04:37:58 +05:30
Highpressure 6381f63722
Update ui.py
option switches went missing in last commit
2024-09-06 21:56:13 +02:00
Highpressure 83ca917c66
Update capturer.py
added change to support multi camera device support as my device 0 is a virtual cam for iphone redirection, device 1 is obs and device 2 is my real camera
2024-09-06 20:59:35 +02:00
Highpressure 2d34201cfc
Update ui.py
added dropdown for multi camera device selection
2024-09-06 20:58:38 +02:00
dependabot[bot] 31f437ff79
Bump torch from 2.0.1 to 2.2.0
Bumps [torch](https://github.com/pytorch/pytorch) from 2.0.1 to 2.2.0.
- [Release notes](https://github.com/pytorch/pytorch/releases)
- [Changelog](https://github.com/pytorch/pytorch/blob/main/RELEASE.md)
- [Commits](https://github.com/pytorch/pytorch/compare/v2.0.1...v2.2.0)

---
updated-dependencies:
- dependency-name: torch
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
2024-07-31 03:29:47 +00:00
14 changed files with 648 additions and 39 deletions

2
.gitignore vendored
View File

@ -22,3 +22,5 @@ models/inswapper_128.onnx
models/GFPGANv1.4.pth
*.onnx
models/DMDNet.pth
faceswap/
.vscode/

View File

@ -9,6 +9,33 @@ The developers of this software are aware of its possible unethical applications
Users of this software are expected to use this software responsibly while abiding by local laws. If the face of a real person is being used, users are required to get consent from the concerned person and clearly mention that it is a deepfake when posting content online. Developers of this software will not be responsible for actions of end-users.
## New Features
### Resizable Preview Window
Dynamically improve the performance by using the --resizable parameter
![resizable-gif](resizable.gif)
### Face Mapping
Track faces and change it on the fly
![face_mapping_source](face_mapping_source.gif)
source video
![face-mapping](face_mapping.png)
Tick this switch
![face-mapping2](face_mapping2.png)
Map the faces
![face_mapping_result](face_mapping_result.gif)
And see the magic!
## How do I install it?
@ -38,7 +65,7 @@ For MAC OS, You have to install or upgrade python-tk package:
```
brew install python-tk@3.10
```
##### DONE!!! If you don't have any GPU, You should be able to run roop using `python run.py` command. Keep in mind that while running the program for first time, it will download some models which can take time depending on your network connection.
##### DONE!!! If you don't have any GPU, You should be able to run Deep-Live-Cam using `python run.py` command. Keep in mind that while running the program for first time, it will download some models which can take time depending on your network connection.
#### 5. Proceed if you want to use GPU acceleration (optional)
@ -146,6 +173,7 @@ options:
--keep-audio keep original audio
--keep-frames keep temporary frames
--many-faces process every face
--map-faces map source target faces
--nsfw-filter filter the NSFW image or video
--video-encoder {libx264,libx265,libvpx-vp9} adjust output video encoder
--video-quality [0-51] adjust output video quality
@ -309,7 +337,7 @@ sudo apt-get -y install cuda-toolkit-11-8
If you want the latest and greatest build, or want to see some new great features, go to our [experimental branch](https://github.com/hacksider/Deep-Live-Cam/tree/experimental) and experience what the contributors have given.
## TODO
- [ ] Support multiple faces feature
:heavy_check_mark: Support multiple faces feature
- [ ] Develop a version for web app/service
- [ ] UI/UX enhancements for desktop app
- [ ] Speed up model loading
@ -323,6 +351,7 @@ If you want the latest and greatest build, or want to see some new great feature
- [deepinsight](https://github.com/deepinsight): for their [insightface](https://github.com/deepinsight/insightface) project which provided a well-made library and models. Please be reminded that the [use of the model is for non-commercial research purposes only](https://github.com/deepinsight/insightface?tab=readme-ov-file#license).
- [havok2-htwo](https://github.com/havok2-htwo) : for sharing the code for webcam
- [GosuDRM](https://github.com/GosuDRM/nsfw-roop) : for uncensoring roop
- [pereiraroland26](https://github.com/pereiraroland26) : Multiple faces support
- [vic4key](https://github.com/vic4key) : For supporting/contributing on this project
- and [all developers](https://github.com/hacksider/Deep-Live-Cam/graphs/contributors) behind libraries used in this project.
- Foot Note: [This is originally roop-cam, see the full history of the code here.](https://github.com/hacksider/roop-cam) Please be informed that the base author of the code is [s0md3v](https://github.com/s0md3v/roop)

BIN
face_mapping.png 100644

Binary file not shown.

After

Width:  |  Height:  |  Size: 76 KiB

BIN
face_mapping2.png 100644

Binary file not shown.

After

Width:  |  Height:  |  Size: 104 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.0 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 8.6 MiB

View File

@ -0,0 +1,32 @@
import numpy as np
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score
from typing import Any
def find_cluster_centroids(embeddings, max_k=10) -> Any:
inertia = []
cluster_centroids = []
K = range(1, max_k+1)
for k in K:
kmeans = KMeans(n_clusters=k, random_state=0)
kmeans.fit(embeddings)
inertia.append(kmeans.inertia_)
cluster_centroids.append({"k": k, "centroids": kmeans.cluster_centers_})
diffs = [inertia[i] - inertia[i+1] for i in range(len(inertia)-1)]
optimal_centroids = cluster_centroids[diffs.index(max(diffs)) + 1]['centroids']
return optimal_centroids
def find_closest_centroid(centroids: list, normed_face_embedding) -> list:
try:
centroids = np.array(centroids)
normed_face_embedding = np.array(normed_face_embedding)
similarities = np.dot(centroids, normed_face_embedding)
closest_centroid_index = np.argmax(similarities)
return closest_centroid_index, centroids[closest_centroid_index]
except ValueError:
return None

View File

@ -40,6 +40,7 @@ def parse_args() -> None:
program.add_argument('--keep-frames', help='keep temporary frames', dest='keep_frames', action='store_true', default=False)
program.add_argument('--many-faces', help='process every face', dest='many_faces', action='store_true', default=False)
program.add_argument('--nsfw-filter', help='filter the NSFW image or video', dest='nsfw_filter', action='store_true', default=False)
program.add_argument('--map-faces', help='map source target faces', dest='map_faces', action='store_true', default=False)
program.add_argument('--video-encoder', help='adjust output video encoder', dest='video_encoder', default='libx264', choices=['libx264', 'libx265', 'libvpx-vp9'])
program.add_argument('--video-quality', help='adjust output video quality', dest='video_quality', type=int, default=18, choices=range(52), metavar='[0-51]')
program.add_argument('--live-mirror', help='The live camera display as you see it in the front-facing camera frame', dest='live_mirror', action='store_true', default=False)
@ -67,6 +68,7 @@ def parse_args() -> None:
modules.globals.keep_frames = args.keep_frames
modules.globals.many_faces = args.many_faces
modules.globals.nsfw_filter = args.nsfw_filter
modules.globals.map_faces = args.map_faces
modules.globals.video_encoder = args.video_encoder
modules.globals.video_quality = args.video_quality
modules.globals.live_mirror = args.live_mirror
@ -194,10 +196,13 @@ def start() -> None:
# process image to videos
if modules.globals.nsfw_filter and ui.check_and_ignore_nsfw(modules.globals.target_path, destroy):
return
if not modules.globals.map_faces:
update_status('Creating temp resources...')
create_temp(modules.globals.target_path)
update_status('Extracting frames...')
extract_frames(modules.globals.target_path)
temp_frame_paths = get_temp_frame_paths(modules.globals.target_path)
for frame_processor in get_frame_processors_modules(modules.globals.frame_processors):
update_status('Progressing...', frame_processor.NAME)

View File

@ -1,8 +1,16 @@
import os
import shutil
from typing import Any
import insightface
import cv2
import numpy as np
import modules.globals
from tqdm import tqdm
from modules.typing import Frame
from modules.cluster_analysis import find_cluster_centroids, find_closest_centroid
from modules.utilities import get_temp_directory_path, create_temp, extract_frames, clean_temp, get_temp_frame_paths
from pathlib import Path
FACE_ANALYSER = None
@ -29,3 +37,153 @@ def get_many_faces(frame: Frame) -> Any:
return get_face_analyser().get(frame)
except IndexError:
return None
def has_valid_map() -> bool:
for map in modules.globals.souce_target_map:
if "source" in map and "target" in map:
return True
return False
def default_source_face() -> Any:
for map in modules.globals.souce_target_map:
if "source" in map:
return map['source']['face']
return None
def simplify_maps() -> Any:
centroids = []
faces = []
for map in modules.globals.souce_target_map:
if "source" in map and "target" in map:
centroids.append(map['target']['face'].normed_embedding)
faces.append(map['source']['face'])
modules.globals.simple_map = {'source_faces': faces, 'target_embeddings': centroids}
return None
def add_blank_map() -> Any:
try:
max_id = -1
if len(modules.globals.souce_target_map) > 0:
max_id = max(modules.globals.souce_target_map, key=lambda x: x['id'])['id']
modules.globals.souce_target_map.append({
'id' : max_id + 1
})
except ValueError:
return None
def get_unique_faces_from_target_image() -> Any:
try:
modules.globals.souce_target_map = []
target_frame = cv2.imread(modules.globals.target_path)
many_faces = get_many_faces(target_frame)
i = 0
for face in many_faces:
x_min, y_min, x_max, y_max = face['bbox']
modules.globals.souce_target_map.append({
'id' : i,
'target' : {
'cv2' : target_frame[int(y_min):int(y_max), int(x_min):int(x_max)],
'face' : face
}
})
i = i + 1
except ValueError:
return None
def get_unique_faces_from_target_video() -> Any:
try:
modules.globals.souce_target_map = []
frame_face_embeddings = []
face_embeddings = []
print('Creating temp resources...')
clean_temp(modules.globals.target_path)
create_temp(modules.globals.target_path)
print('Extracting frames...')
extract_frames(modules.globals.target_path)
temp_frame_paths = get_temp_frame_paths(modules.globals.target_path)
i = 0
for temp_frame_path in tqdm(temp_frame_paths, desc="Extracting face embeddings from frames"):
temp_frame = cv2.imread(temp_frame_path)
many_faces = get_many_faces(temp_frame)
for face in many_faces:
face_embeddings.append(face.normed_embedding)
frame_face_embeddings.append({'frame': i, 'faces': many_faces, 'location': temp_frame_path})
i += 1
centroids = find_cluster_centroids(face_embeddings)
for frame in frame_face_embeddings:
for face in frame['faces']:
closest_centroid_index, _ = find_closest_centroid(centroids, face.normed_embedding)
face['target_centroid'] = closest_centroid_index
for i in range(len(centroids)):
modules.globals.souce_target_map.append({
'id' : i
})
temp = []
for frame in tqdm(frame_face_embeddings, desc=f"Mapping frame embeddings to centroids-{i}"):
temp.append({'frame': frame['frame'], 'faces': [face for face in frame['faces'] if face['target_centroid'] == i], 'location': frame['location']})
modules.globals.souce_target_map[i]['target_faces_in_frame'] = temp
# dump_faces(centroids, frame_face_embeddings)
default_target_face()
except ValueError:
return None
def default_target_face():
for map in modules.globals.souce_target_map:
best_face = None
best_frame = None
for frame in map['target_faces_in_frame']:
if len(frame['faces']) > 0:
best_face = frame['faces'][0]
best_frame = frame
break
for frame in map['target_faces_in_frame']:
for face in frame['faces']:
if face['det_score'] > best_face['det_score']:
best_face = face
best_frame = frame
x_min, y_min, x_max, y_max = best_face['bbox']
target_frame = cv2.imread(best_frame['location'])
map['target'] = {
'cv2' : target_frame[int(y_min):int(y_max), int(x_min):int(x_max)],
'face' : best_face
}
def dump_faces(centroids: Any, frame_face_embeddings: list):
temp_directory_path = get_temp_directory_path(modules.globals.target_path)
for i in range(len(centroids)):
if os.path.exists(temp_directory_path + f"/{i}") and os.path.isdir(temp_directory_path + f"/{i}"):
shutil.rmtree(temp_directory_path + f"/{i}")
Path(temp_directory_path + f"/{i}").mkdir(parents=True, exist_ok=True)
for frame in tqdm(frame_face_embeddings, desc=f"Copying faces to temp/./{i}"):
temp_frame = cv2.imread(frame['location'])
j = 0
for face in frame['faces']:
if face['target_centroid'] == i:
x_min, y_min, x_max, y_max = face['bbox']
if temp_frame[int(y_min):int(y_max), int(x_min):int(x_max)].size > 0:
cv2.imwrite(temp_directory_path + f"/{i}/{frame['frame']}_{j}.png", temp_frame[int(y_min):int(y_max), int(x_min):int(x_max)])
j += 1

View File

@ -1,5 +1,5 @@
import os
from typing import List, Dict
from typing import List, Dict, Any
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
WORKFLOW_DIR = os.path.join(ROOT_DIR, 'workflow')
@ -9,6 +9,9 @@ file_types = [
('Video', ('*.mp4','*.mkv'))
]
souce_target_map = []
simple_map = {}
source_path = None
target_path = None
output_path = None
@ -17,6 +20,7 @@ keep_fps = None
keep_audio = None
keep_frames = None
many_faces = None
map_faces = None
color_correction = None # New global variable for color correction toggle
nsfw_filter = None
video_encoder = None

View File

@ -6,9 +6,10 @@ import threading
import modules.globals
import modules.processors.frame.core
from modules.core import update_status
from modules.face_analyser import get_one_face, get_many_faces
from modules.face_analyser import get_one_face, get_many_faces, default_source_face
from modules.typing import Face, Frame
from modules.utilities import conditional_download, resolve_relative_path, is_image, is_video
from modules.cluster_analysis import find_closest_centroid
FACE_SWAPPER = None
THREAD_LOCK = threading.Lock()
@ -22,10 +23,10 @@ def pre_check() -> bool:
def pre_start() -> bool:
if not is_image(modules.globals.source_path):
if not modules.globals.map_faces and not is_image(modules.globals.source_path):
update_status('Select an image for source path.', NAME)
return False
elif not get_one_face(cv2.imread(modules.globals.source_path)):
elif not modules.globals.map_faces and not get_one_face(cv2.imread(modules.globals.source_path)):
update_status('No face in source path detected.', NAME)
return False
if not is_image(modules.globals.target_path) and not is_video(modules.globals.target_path):
@ -65,7 +66,70 @@ def process_frame(source_face: Face, temp_frame: Frame) -> Frame:
return temp_frame
def process_frame_v2(temp_frame: Frame, temp_frame_path: str = "") -> Frame:
if is_image(modules.globals.target_path):
if modules.globals.many_faces:
source_face = default_source_face()
for map in modules.globals.souce_target_map:
target_face = map['target']['face']
temp_frame = swap_face(source_face, target_face, temp_frame)
elif not modules.globals.many_faces:
for map in modules.globals.souce_target_map:
if "source" in map:
source_face = map['source']['face']
target_face = map['target']['face']
temp_frame = swap_face(source_face, target_face, temp_frame)
elif is_video(modules.globals.target_path):
if modules.globals.many_faces:
source_face = default_source_face()
for map in modules.globals.souce_target_map:
target_frame = [f for f in map['target_faces_in_frame'] if f['location'] == temp_frame_path]
for frame in target_frame:
for target_face in frame['faces']:
temp_frame = swap_face(source_face, target_face, temp_frame)
elif not modules.globals.many_faces:
for map in modules.globals.souce_target_map:
if "source" in map:
target_frame = [f for f in map['target_faces_in_frame'] if f['location'] == temp_frame_path]
source_face = map['source']['face']
for frame in target_frame:
for target_face in frame['faces']:
temp_frame = swap_face(source_face, target_face, temp_frame)
else:
detected_faces = get_many_faces(temp_frame)
if modules.globals.many_faces:
if detected_faces:
source_face = default_source_face()
for target_face in detected_faces:
temp_frame = swap_face(source_face, target_face, temp_frame)
elif not modules.globals.many_faces:
if detected_faces:
if len(detected_faces) <= len(modules.globals.simple_map['target_embeddings']):
for detected_face in detected_faces:
closest_centroid_index, _ = find_closest_centroid(modules.globals.simple_map['target_embeddings'], detected_face.normed_embedding)
temp_frame = swap_face(modules.globals.simple_map['source_faces'][closest_centroid_index], detected_face, temp_frame)
else:
detected_faces_centroids = []
for face in detected_faces:
detected_faces_centroids.append(face.normed_embedding)
i = 0
for target_embedding in modules.globals.simple_map['target_embeddings']:
closest_centroid_index, _ = find_closest_centroid(detected_faces_centroids, target_embedding)
temp_frame = swap_face(modules.globals.simple_map['source_faces'][i], detected_faces[closest_centroid_index], temp_frame)
i += 1
return temp_frame
def process_frames(source_path: str, temp_frame_paths: List[str], progress: Any = None) -> None:
if not modules.globals.map_faces:
source_face = get_one_face(cv2.imread(source_path))
for temp_frame_path in temp_frame_paths:
temp_frame = cv2.imread(temp_frame_path)
@ -77,14 +141,34 @@ def process_frames(source_path: str, temp_frame_paths: List[str], progress: Any
pass
if progress:
progress.update(1)
else:
for temp_frame_path in temp_frame_paths:
temp_frame = cv2.imread(temp_frame_path)
try:
result = process_frame_v2(temp_frame, temp_frame_path)
cv2.imwrite(temp_frame_path, result)
except Exception as exception:
print(exception)
pass
if progress:
progress.update(1)
def process_image(source_path: str, target_path: str, output_path: str) -> None:
if not modules.globals.map_faces:
source_face = get_one_face(cv2.imread(source_path))
target_frame = cv2.imread(target_path)
result = process_frame(source_face, target_frame)
cv2.imwrite(output_path, result)
else:
if modules.globals.many_faces:
update_status('Many faces enabled. Using first source image. Progressing...', NAME)
target_frame = cv2.imread(output_path)
result = process_frame_v2(target_frame)
cv2.imwrite(output_path, result)
def process_video(source_path: str, temp_frame_paths: List[str]) -> None:
if modules.globals.map_faces and modules.globals.many_faces:
update_status('Many faces enabled. Using first source image. Progressing...', NAME)
modules.processors.frame.core.process_video(source_path, temp_frame_paths, process_frames)

View File

@ -7,12 +7,14 @@ from PIL import Image, ImageOps
import modules.globals
import modules.metadata
from modules.face_analyser import get_one_face
from modules.face_analyser import get_one_face, get_unique_faces_from_target_image, get_unique_faces_from_target_video, add_blank_map, has_valid_map, simplify_maps
from modules.capturer import get_video_frame, get_video_frame_total
from modules.processors.frame.core import get_frame_processors_modules
from modules.utilities import is_image, is_video, resolve_relative_path, has_image_extension
ROOT = None
POPUP = None
POPUP_LIVE = None
ROOT_HEIGHT = 700
ROOT_WIDTH = 600
@ -22,6 +24,22 @@ PREVIEW_MAX_WIDTH = 1200
PREVIEW_DEFAULT_WIDTH = 960
PREVIEW_DEFAULT_HEIGHT = 540
POPUP_WIDTH = 750
POPUP_HEIGHT = 810
POPUP_SCROLL_WIDTH = 740,
POPUP_SCROLL_HEIGHT = 700
POPUP_LIVE_WIDTH = 900
POPUP_LIVE_HEIGHT = 820
POPUP_LIVE_SCROLL_WIDTH = 890,
POPUP_LIVE_SCROLL_HEIGHT = 700
MAPPER_PREVIEW_MAX_HEIGHT = 100
MAPPER_PREVIEW_MAX_WIDTH = 100
DEFAULT_BUTTON_WIDTH = 200
DEFAULT_BUTTON_HEIGHT = 40
RECENT_DIRECTORY_SOURCE = None
RECENT_DIRECTORY_TARGET = None
RECENT_DIRECTORY_OUTPUT = None
@ -31,6 +49,11 @@ preview_slider = None
source_label = None
target_label = None
status_label = None
popup_status_label = None
popup_status_label_live = None
source_label_dict = {}
source_label_dict_live = {}
target_label_dict_live = {}
img_ft, vid_ft = modules.globals.file_types
@ -102,7 +125,11 @@ def create_root(start: Callable[[], None], destroy: Callable[[], None]) -> ctk.C
# nsfw_switch = ctk.CTkSwitch(root, text='NSFW filter', variable=nsfw_value, cursor='hand2', command=lambda: setattr(modules.globals, 'nsfw_filter', nsfw_value.get()))
# nsfw_switch.place(relx=0.6, rely=0.7)
start_button = ctk.CTkButton(root, text='Start', cursor='hand2', command=lambda: select_output_path(start))
map_faces = ctk.BooleanVar(value=modules.globals.map_faces)
map_faces_switch = ctk.CTkSwitch(root, text='Map faces', variable=map_faces, cursor='hand2', command=lambda: setattr(modules.globals, 'map_faces', map_faces.get()))
map_faces_switch.place(relx=0.1, rely=0.75)
start_button = ctk.CTkButton(root, text='Start', cursor='hand2', command=lambda: analyze_target(start, root))
start_button.place(relx=0.15, rely=0.80, relwidth=0.2, relheight=0.05)
stop_button = ctk.CTkButton(root, text='Destroy', cursor='hand2', command=lambda: destroy())
@ -111,7 +138,7 @@ def create_root(start: Callable[[], None], destroy: Callable[[], None]) -> ctk.C
preview_button = ctk.CTkButton(root, text='Preview', cursor='hand2', command=lambda: toggle_preview())
preview_button.place(relx=0.65, rely=0.80, relwidth=0.2, relheight=0.05)
live_button = ctk.CTkButton(root, text='Live', cursor='hand2', command=lambda: webcam_preview())
live_button = ctk.CTkButton(root, text='Live', cursor='hand2', command=lambda: webcam_preview(root))
live_button.place(relx=0.40, rely=0.86, relwidth=0.2, relheight=0.05)
status_label = ctk.CTkLabel(root, text=None, justify='center')
@ -124,6 +151,109 @@ def create_root(start: Callable[[], None], destroy: Callable[[], None]) -> ctk.C
return root
def analyze_target(start: Callable[[], None], root: ctk.CTk):
if POPUP != None and POPUP.winfo_exists():
update_status("Please complete pop-up or close it.")
return
if modules.globals.map_faces:
modules.globals.souce_target_map = []
if is_image(modules.globals.target_path):
update_status('Getting unique faces')
get_unique_faces_from_target_image()
elif is_video(modules.globals.target_path):
update_status('Getting unique faces')
get_unique_faces_from_target_video()
if len(modules.globals.souce_target_map) > 0:
create_source_target_popup(start, root, modules.globals.souce_target_map)
else:
update_status("No faces found in target")
else:
select_output_path(start)
def create_source_target_popup(start: Callable[[], None], root: ctk.CTk, map: list) -> None:
global POPUP, popup_status_label
POPUP = ctk.CTkToplevel(root)
POPUP.title("Source x Target Mapper")
POPUP.geometry(f"{POPUP_WIDTH}x{POPUP_HEIGHT}")
POPUP.focus()
def on_submit_click(start):
if has_valid_map():
POPUP.destroy()
select_output_path(start)
else:
update_pop_status("Atleast 1 source with target is required!")
scrollable_frame = ctk.CTkScrollableFrame(POPUP, width=POPUP_SCROLL_WIDTH, height=POPUP_SCROLL_HEIGHT)
scrollable_frame.grid(row=0, column=0, padx=0, pady=0, sticky='nsew')
def on_button_click(map, button_num):
map = update_popup_source(scrollable_frame, map, button_num)
for item in map:
id = item['id']
button = ctk.CTkButton(scrollable_frame, text="Select source image", command=lambda id=id: on_button_click(map, id), width=DEFAULT_BUTTON_WIDTH, height=DEFAULT_BUTTON_HEIGHT)
button.grid(row=id, column=0, padx=50, pady=10)
x_label = ctk.CTkLabel(scrollable_frame, text=f"X", width=MAPPER_PREVIEW_MAX_WIDTH, height=MAPPER_PREVIEW_MAX_HEIGHT)
x_label.grid(row=id, column=2, padx=10, pady=10)
image = Image.fromarray(cv2.cvtColor(item['target']['cv2'], cv2.COLOR_BGR2RGB))
image = image.resize((MAPPER_PREVIEW_MAX_WIDTH, MAPPER_PREVIEW_MAX_HEIGHT), Image.LANCZOS)
tk_image = ctk.CTkImage(image, size=image.size)
target_image = ctk.CTkLabel(scrollable_frame, text=f"T-{id}", width=MAPPER_PREVIEW_MAX_WIDTH, height=MAPPER_PREVIEW_MAX_HEIGHT)
target_image.grid(row=id, column=3, padx=10, pady=10)
target_image.configure(image=tk_image)
popup_status_label = ctk.CTkLabel(POPUP, text=None, justify='center')
popup_status_label.grid(row=1, column=0, pady=15)
close_button = ctk.CTkButton(POPUP, text="Submit", command=lambda: on_submit_click(start))
close_button.grid(row=2, column=0, pady=10)
def update_popup_source(scrollable_frame: ctk.CTkScrollableFrame, map: list, button_num: int) -> list:
global source_label_dict
source_path = ctk.filedialog.askopenfilename(title='select an source image', initialdir=RECENT_DIRECTORY_SOURCE, filetypes=[img_ft])
if "source" in map[button_num]:
map[button_num].pop("source")
source_label_dict[button_num].destroy()
del source_label_dict[button_num]
if source_path == "":
return map
else:
cv2_img = cv2.imread(source_path)
face = get_one_face(cv2_img)
if face:
x_min, y_min, x_max, y_max = face['bbox']
map[button_num]['source'] = {
'cv2' : cv2_img[int(y_min):int(y_max), int(x_min):int(x_max)],
'face' : face
}
image = Image.fromarray(cv2.cvtColor(map[button_num]['source']['cv2'], cv2.COLOR_BGR2RGB))
image = image.resize((MAPPER_PREVIEW_MAX_WIDTH, MAPPER_PREVIEW_MAX_HEIGHT), Image.LANCZOS)
tk_image = ctk.CTkImage(image, size=image.size)
source_image = ctk.CTkLabel(scrollable_frame, text=f"S-{button_num}", width=MAPPER_PREVIEW_MAX_WIDTH, height=MAPPER_PREVIEW_MAX_HEIGHT)
source_image.grid(row=button_num, column=1, padx=10, pady=10)
source_image.configure(image=tk_image)
source_label_dict[button_num] = source_image
else:
update_pop_status("Face could not be detected in last upload!")
return map
def create_preview(parent: ctk.CTkToplevel) -> ctk.CTkToplevel:
global preview_label, preview_slider
@ -147,6 +277,11 @@ def update_status(text: str) -> None:
status_label.configure(text=text)
ROOT.update()
def update_pop_status(text: str) -> None:
popup_status_label.configure(text=text)
def update_pop_live_status(text: str) -> None:
popup_status_label_live.configure(text=text)
def update_tumbler(var: str, value: bool) -> None:
modules.globals.fp_ui[var] = value
@ -315,11 +450,17 @@ def update_preview(frame_number: int = 0) -> None:
update_status('Processing succeed!')
PREVIEW.deiconify()
def webcam_preview():
def webcam_preview(root: ctk.CTk):
if not modules.globals.map_faces:
if modules.globals.source_path is None:
# No image selected
return
create_webcam_preview()
else:
modules.globals.souce_target_map = []
create_source_target_popup_for_webcam(root, modules.globals.souce_target_map)
def create_webcam_preview():
global preview_label, PREVIEW
camera = cv2.VideoCapture(0) # Use index for the webcam (adjust the index accordingly if necessary)
@ -340,10 +481,6 @@ def webcam_preview():
if not ret:
break
# Select and save face image only once
if source_image is None and modules.globals.source_path:
source_image = get_one_face(cv2.imread(modules.globals.source_path))
temp_frame = frame.copy() #Create a copy of the frame
if modules.globals.live_mirror:
@ -352,8 +489,18 @@ def webcam_preview():
if modules.globals.live_resizable:
temp_frame = fit_image_to_size(temp_frame, PREVIEW.winfo_width(), PREVIEW.winfo_height())
if not modules.globals.map_faces:
# Select and save face image only once
if source_image is None and modules.globals.source_path:
source_image = get_one_face(cv2.imread(modules.globals.source_path))
for frame_processor in frame_processors:
temp_frame = frame_processor.process_frame(source_image, temp_frame)
else:
modules.globals.target_path = None
for frame_processor in frame_processors:
temp_frame = frame_processor.process_frame_v2(temp_frame)
image = cv2.cvtColor(temp_frame, cv2.COLOR_BGR2RGB) # Convert the image to RGB format to display it with Tkinter
image = Image.fromarray(image)
@ -367,3 +514,151 @@ def webcam_preview():
camera.release()
PREVIEW.withdraw() # Close preview window when loop is finished
def create_source_target_popup_for_webcam(root: ctk.CTk, map: list) -> None:
global POPUP_LIVE, popup_status_label_live
POPUP_LIVE = ctk.CTkToplevel(root)
POPUP_LIVE.title("Source x Target Mapper")
POPUP_LIVE.geometry(f"{POPUP_LIVE_WIDTH}x{POPUP_LIVE_HEIGHT}")
POPUP_LIVE.focus()
def on_submit_click():
if has_valid_map():
POPUP_LIVE.destroy()
simplify_maps()
create_webcam_preview()
else:
update_pop_live_status("Atleast 1 source with target is required!")
def on_add_click():
add_blank_map()
refresh_data(map)
update_pop_live_status("Please provide mapping!")
popup_status_label_live = ctk.CTkLabel(POPUP_LIVE, text=None, justify='center')
popup_status_label_live.grid(row=1, column=0, pady=15)
add_button = ctk.CTkButton(POPUP_LIVE, text="Add", command=lambda: on_add_click())
add_button.place(relx=0.2, rely=0.92, relwidth=0.2, relheight=0.05)
close_button = ctk.CTkButton(POPUP_LIVE, text="Submit", command=lambda: on_submit_click())
close_button.place(relx=0.6, rely=0.92, relwidth=0.2, relheight=0.05)
def refresh_data(map: list):
global POPUP_LIVE
scrollable_frame = ctk.CTkScrollableFrame(POPUP_LIVE, width=POPUP_LIVE_SCROLL_WIDTH, height=POPUP_LIVE_SCROLL_HEIGHT)
scrollable_frame.grid(row=0, column=0, padx=0, pady=0, sticky='nsew')
def on_sbutton_click(map, button_num):
map = update_webcam_source(scrollable_frame, map, button_num)
def on_tbutton_click(map, button_num):
map = update_webcam_target(scrollable_frame, map, button_num)
for item in map:
id = item['id']
button = ctk.CTkButton(scrollable_frame, text="Select source image", command=lambda id=id: on_sbutton_click(map, id), width=DEFAULT_BUTTON_WIDTH, height=DEFAULT_BUTTON_HEIGHT)
button.grid(row=id, column=0, padx=30, pady=10)
x_label = ctk.CTkLabel(scrollable_frame, text=f"X", width=MAPPER_PREVIEW_MAX_WIDTH, height=MAPPER_PREVIEW_MAX_HEIGHT)
x_label.grid(row=id, column=2, padx=10, pady=10)
button = ctk.CTkButton(scrollable_frame, text="Select target image", command=lambda id=id: on_tbutton_click(map, id), width=DEFAULT_BUTTON_WIDTH, height=DEFAULT_BUTTON_HEIGHT)
button.grid(row=id, column=3, padx=20, pady=10)
if "source" in item:
image = Image.fromarray(cv2.cvtColor(item['source']['cv2'], cv2.COLOR_BGR2RGB))
image = image.resize((MAPPER_PREVIEW_MAX_WIDTH, MAPPER_PREVIEW_MAX_HEIGHT), Image.LANCZOS)
tk_image = ctk.CTkImage(image, size=image.size)
source_image = ctk.CTkLabel(scrollable_frame, text=f"S-{id}", width=MAPPER_PREVIEW_MAX_WIDTH, height=MAPPER_PREVIEW_MAX_HEIGHT)
source_image.grid(row=id, column=1, padx=10, pady=10)
source_image.configure(image=tk_image)
if "target" in item:
image = Image.fromarray(cv2.cvtColor(item['target']['cv2'], cv2.COLOR_BGR2RGB))
image = image.resize((MAPPER_PREVIEW_MAX_WIDTH, MAPPER_PREVIEW_MAX_HEIGHT), Image.LANCZOS)
tk_image = ctk.CTkImage(image, size=image.size)
target_image = ctk.CTkLabel(scrollable_frame, text=f"T-{id}", width=MAPPER_PREVIEW_MAX_WIDTH, height=MAPPER_PREVIEW_MAX_HEIGHT)
target_image.grid(row=id, column=4, padx=20, pady=10)
target_image.configure(image=tk_image)
def update_webcam_source(scrollable_frame: ctk.CTkScrollableFrame, map: list, button_num: int) -> list:
global source_label_dict_live
source_path = ctk.filedialog.askopenfilename(title='select an source image', initialdir=RECENT_DIRECTORY_SOURCE, filetypes=[img_ft])
if "source" in map[button_num]:
map[button_num].pop("source")
source_label_dict_live[button_num].destroy()
del source_label_dict_live[button_num]
if source_path == "":
return map
else:
cv2_img = cv2.imread(source_path)
face = get_one_face(cv2_img)
if face:
x_min, y_min, x_max, y_max = face['bbox']
map[button_num]['source'] = {
'cv2' : cv2_img[int(y_min):int(y_max), int(x_min):int(x_max)],
'face' : face
}
image = Image.fromarray(cv2.cvtColor(map[button_num]['source']['cv2'], cv2.COLOR_BGR2RGB))
image = image.resize((MAPPER_PREVIEW_MAX_WIDTH, MAPPER_PREVIEW_MAX_HEIGHT), Image.LANCZOS)
tk_image = ctk.CTkImage(image, size=image.size)
source_image = ctk.CTkLabel(scrollable_frame, text=f"S-{button_num}", width=MAPPER_PREVIEW_MAX_WIDTH, height=MAPPER_PREVIEW_MAX_HEIGHT)
source_image.grid(row=button_num, column=1, padx=10, pady=10)
source_image.configure(image=tk_image)
source_label_dict_live[button_num] = source_image
else:
update_pop_live_status("Face could not be detected in last upload!")
return map
def update_webcam_target(scrollable_frame: ctk.CTkScrollableFrame, map: list, button_num: int) -> list:
global target_label_dict_live
target_path = ctk.filedialog.askopenfilename(title='select an target image', initialdir=RECENT_DIRECTORY_SOURCE, filetypes=[img_ft])
if "target" in map[button_num]:
map[button_num].pop("target")
target_label_dict_live[button_num].destroy()
del target_label_dict_live[button_num]
if target_path == "":
return map
else:
cv2_img = cv2.imread(target_path)
face = get_one_face(cv2_img)
if face:
x_min, y_min, x_max, y_max = face['bbox']
map[button_num]['target'] = {
'cv2' : cv2_img[int(y_min):int(y_max), int(x_min):int(x_max)],
'face' : face
}
image = Image.fromarray(cv2.cvtColor(map[button_num]['target']['cv2'], cv2.COLOR_BGR2RGB))
image = image.resize((MAPPER_PREVIEW_MAX_WIDTH, MAPPER_PREVIEW_MAX_HEIGHT), Image.LANCZOS)
tk_image = ctk.CTkImage(image, size=image.size)
target_image = ctk.CTkLabel(scrollable_frame, text=f"T-{button_num}", width=MAPPER_PREVIEW_MAX_WIDTH, height=MAPPER_PREVIEW_MAX_HEIGHT)
target_image.grid(row=button_num, column=4, padx=20, pady=10)
target_image.configure(image=tk_image)
target_label_dict_live[button_num] = target_image
else:
update_pop_live_status("Face could not be detected in last upload!")
return map

View File

@ -9,7 +9,7 @@ tk==0.1.0
customtkinter==5.2.2
pillow==9.5.0
torch==2.0.1+cu118; sys_platform != 'darwin'
torch==2.0.1; sys_platform == 'darwin'
torch==2.2.0; sys_platform == 'darwin'
torchvision==0.15.2+cu118; sys_platform != 'darwin'
torchvision==0.15.2; sys_platform == 'darwin'
onnxruntime==1.18.0; sys_platform == 'darwin' and platform_machine != 'arm64'

BIN
resizable.gif 100644

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.3 MiB