Merge branch 'hacksider:main' into premain

pull/1146/head
Aryan Hardik Dani 2025-05-03 12:29:21 +05:30 committed by GitHub
commit ea73f6b890
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
5 changed files with 61 additions and 21 deletions

View File

@ -30,11 +30,11 @@ By using this software, you agree to these terms and commit to using it in a man
Users are expected to use this software responsibly and legally. If using a real person's face, obtain their consent and clearly label any output as a deepfake when sharing online. We are not responsible for end-user actions.
## Exclusive v2.0 Quick Start - Pre-built (Windows / Nvidia)
## Exclusive v2.0 Quick Start - Pre-built (Windows)
<a href="https://deeplivecam.net/index.php/quickstart"> <img src="https://github.com/user-attachments/assets/7d993b32-e3e8-4cd3-bbfb-a549152ebdd5" width="285" height="77" />
<a href="https://deeplivecam.net/index.php/quickstart"> <img src="media/Download.png" width="285" height="77" />
##### This is the fastest build you can get if you have a discrete NVIDIA GPU.
##### This is the fastest build you can get if you have a discrete NVIDIA or AMD GPU.
###### These Pre-builts are perfect for non-technical users or those who don't have time to, or can't manually install all the requirements. Just a heads-up: this is an open-source project, so you can also install it manually. This will be 60 days ahead on the open source version.
@ -133,12 +133,20 @@ Place these files in the "**models**" folder.
We highly recommend using a `venv` to avoid issues.
For Windows:
```bash
python -m venv venv
venv\Scripts\activate
pip install -r requirements.txt
```
For Linux:
```bash
# Ensure you use the installed Python 3.10
python3 -m venv venv
source venv/bin/activate
pip install -r requirements.txt
```
**For macOS:**

BIN
media/Download.png 100644

Binary file not shown.

After

Width:  |  Height:  |  Size: 8.7 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 9.0 KiB

View File

@ -42,18 +42,29 @@ def get_frame_processors_modules(frame_processors: List[str]) -> List[ModuleType
def set_frame_processors_modules_from_ui(frame_processors: List[str]) -> None:
global FRAME_PROCESSORS_MODULES
current_processor_names = [proc.__name__.split('.')[-1] for proc in FRAME_PROCESSORS_MODULES]
for frame_processor, state in modules.globals.fp_ui.items():
if state == True and frame_processor not in frame_processors:
frame_processor_module = load_frame_processor_module(frame_processor)
FRAME_PROCESSORS_MODULES.append(frame_processor_module)
modules.globals.frame_processors.append(frame_processor)
if state == False:
if state == True and frame_processor not in current_processor_names:
try:
frame_processor_module = load_frame_processor_module(frame_processor)
FRAME_PROCESSORS_MODULES.remove(frame_processor_module)
FRAME_PROCESSORS_MODULES.append(frame_processor_module)
if frame_processor not in modules.globals.frame_processors:
modules.globals.frame_processors.append(frame_processor)
except SystemExit:
print(f"Warning: Failed to load frame processor {frame_processor} requested by UI state.")
except Exception as e:
print(f"Warning: Error loading frame processor {frame_processor} requested by UI state: {e}")
elif state == False and frame_processor in current_processor_names:
try:
module_to_remove = next((mod for mod in FRAME_PROCESSORS_MODULES if mod.__name__.endswith(f'.{frame_processor}')), None)
if module_to_remove:
FRAME_PROCESSORS_MODULES.remove(module_to_remove)
if frame_processor in modules.globals.frame_processors:
modules.globals.frame_processors.remove(frame_processor)
except:
pass
except Exception as e:
print(f"Warning: Error removing frame processor {frame_processor}: {e}")
def multi_process_frame(source_path: str, temp_frame_paths: List[str], process_frames: Callable[[str, List[str], Any], None], progress: Any = None) -> None:
with ThreadPoolExecutor(max_workers=modules.globals.execution_threads) as executor:

View File

@ -48,6 +48,17 @@ def pre_start() -> bool:
return True
TENSORRT_AVAILABLE = False
try:
import torch_tensorrt
TENSORRT_AVAILABLE = True
except ImportError as im:
print(f"TensorRT is not available: {im}")
pass
except Exception as e:
print(f"TensorRT is not available: {e}")
pass
def get_face_enhancer() -> Any:
global FACE_ENHANCER
@ -55,16 +66,26 @@ def get_face_enhancer() -> Any:
if FACE_ENHANCER is None:
model_path = os.path.join(models_dir, "GFPGANv1.4.pth")
match platform.system():
case "Darwin": # Mac OS
if torch.backends.mps.is_available():
mps_device = torch.device("mps")
FACE_ENHANCER = gfpgan.GFPGANer(model_path=model_path, upscale=1, device=mps_device) # type: ignore[attr-defined]
else:
FACE_ENHANCER = gfpgan.GFPGANer(model_path=model_path, upscale=1) # type: ignore[attr-defined]
case _: # Other OS
FACE_ENHANCER = gfpgan.GFPGANer(model_path=model_path, upscale=1) # type: ignore[attr-defined]
selected_device = None
device_priority = []
if TENSORRT_AVAILABLE and torch.cuda.is_available():
selected_device = torch.device("cuda")
device_priority.append("TensorRT+CUDA")
elif torch.cuda.is_available():
selected_device = torch.device("cuda")
device_priority.append("CUDA")
elif torch.backends.mps.is_available() and platform.system() == "Darwin":
selected_device = torch.device("mps")
device_priority.append("MPS")
elif not torch.cuda.is_available():
selected_device = torch.device("cpu")
device_priority.append("CPU")
FACE_ENHANCER = gfpgan.GFPGANer(model_path=model_path, upscale=1, device=selected_device)
# for debug:
print(f"Selected device: {selected_device} and device priority: {device_priority}")
return FACE_ENHANCER