pull/1380/merge
netmirror-apple9 2025-06-29 22:14:55 +08:00 committed by GitHub
commit 69daf73c19
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
5 changed files with 397 additions and 109 deletions

View File

@ -39,9 +39,12 @@ def parse_args() -> None:
program.add_argument('--keep-audio', help='keep original audio', dest='keep_audio', action='store_true', default=True)
program.add_argument('--keep-frames', help='keep temporary frames', dest='keep_frames', action='store_true', default=False)
program.add_argument('--many-faces', help='process every face', dest='many_faces', action='store_true', default=False)
program.add_argument('--color-correction', help='apply color correction to the swapped face', dest='color_correction', action='store_true', default=False) # Added this line back
program.add_argument('--nsfw-filter', help='filter the NSFW image or video', dest='nsfw_filter', action='store_true', default=False)
program.add_argument('--map-faces', help='map source target faces', dest='map_faces', action='store_true', default=False)
program.add_argument('--mouth-mask', help='mask the mouth region', dest='mouth_mask', action='store_true', default=False)
program.add_argument('--poisson-blending', help='use Poisson blending for smoother face integration', dest='poisson_blending', action='store_true', default=False)
program.add_argument('--preserve-ears', help='attempt to preserve target ears by modifying the blend mask', dest='preserve_ears', action='store_true', default=False)
program.add_argument('--video-encoder', help='adjust output video encoder', dest='video_encoder', default='libx264', choices=['libx264', 'libx265', 'libvpx-vp9'])
program.add_argument('--video-quality', help='adjust output video quality', dest='video_quality', type=int, default=18, choices=range(52), metavar='[0-51]')
program.add_argument('-l', '--lang', help='Ui language', default="en")
@ -69,7 +72,10 @@ def parse_args() -> None:
modules.globals.keep_audio = args.keep_audio
modules.globals.keep_frames = args.keep_frames
modules.globals.many_faces = args.many_faces
modules.globals.color_correction = args.color_correction
modules.globals.mouth_mask = args.mouth_mask
modules.globals.use_poisson_blending = args.poisson_blending
modules.globals.preserve_target_ears = args.preserve_ears
modules.globals.nsfw_filter = args.nsfw_filter
modules.globals.map_faces = args.map_faces
modules.globals.video_encoder = args.video_encoder

View File

@ -41,3 +41,10 @@ show_mouth_mask_box = False
mask_feather_ratio = 8
mask_down_size = 0.50
mask_size = 1
use_poisson_blending = False # Added for Poisson blending
poisson_blending_feather_amount = 5 # Feathering for the mask before Poisson blending
preserve_target_ears = False # Flag to enable preserving target's ears
ear_width_ratio = 0.18 # Width of the ear exclusion box as a ratio of face bbox width
ear_height_ratio = 0.35 # Height of the ear exclusion box as a ratio of face bbox height
ear_vertical_offset_ratio = 0.20 # Vertical offset of the ear box from top of face bbox
ear_horizontal_overlap_ratio = 0.03 # How much the ear exclusion zone can overlap into the face bbox

View File

@ -71,10 +71,43 @@ def swap_face(source_face: Face, target_face: Face, temp_frame: Frame) -> Frame:
face_swapper = get_face_swapper()
# Apply the face swap
swapped_frame = face_swapper.get(
swapped_frame_result = face_swapper.get( # Renamed to avoid confusion
temp_frame, target_face, source_face, paste_back=True
)
# Ensure swapped_frame_result is not None and is a valid image
if swapped_frame_result is None or not isinstance(swapped_frame_result, np.ndarray):
logging.error("Face swap operation failed or returned invalid result.")
return temp_frame # Return original frame if swap failed
# Color Correction
if modules.globals.color_correction:
# Get the bounding box of the target face to apply color correction
# more accurately to the swapped region.
# The target_face object should have bbox attribute (x1, y1, x2, y2)
if hasattr(target_face, 'bbox'):
x1, y1, x2, y2 = target_face.bbox.astype(int)
# Ensure coordinates are within frame bounds
x1, y1 = max(0, x1), max(0, y1)
x2, y2 = min(swapped_frame_result.shape[1], x2), min(swapped_frame_result.shape[0], y2)
if x1 < x2 and y1 < y2:
swapped_face_region = swapped_frame_result[y1:y2, x1:x2]
target_face_region_original = temp_frame[y1:y2, x1:x2]
if swapped_face_region.size > 0 and target_face_region_original.size > 0:
corrected_swapped_face_region = apply_histogram_matching_color_correction(swapped_face_region, target_face_region_original)
swapped_frame_result[y1:y2, x1:x2] = corrected_swapped_face_region
else:
# Fallback to full frame color correction if regions are invalid
swapped_frame_result = apply_histogram_matching_color_correction(swapped_frame_result, temp_frame)
else:
# Fallback to full frame color correction if bbox is invalid
swapped_frame_result = apply_histogram_matching_color_correction(swapped_frame_result, temp_frame)
else:
# Fallback to full frame color correction if no bbox
swapped_frame_result = apply_histogram_matching_color_correction(swapped_frame_result, temp_frame)
if modules.globals.mouth_mask:
# Create a mask for the target face
face_mask = create_face_mask(target_face, temp_frame)
@ -85,22 +118,136 @@ def swap_face(source_face: Face, target_face: Face, temp_frame: Frame) -> Frame:
)
# Apply the mouth area
swapped_frame = apply_mouth_area(
swapped_frame, mouth_cutout, mouth_box, face_mask, lower_lip_polygon
swapped_frame_result = apply_mouth_area(
swapped_frame_result, mouth_cutout, mouth_box, face_mask, lower_lip_polygon
)
if modules.globals.show_mouth_mask_box:
mouth_mask_data = (mouth_mask, mouth_cutout, mouth_box, lower_lip_polygon)
swapped_frame = draw_mouth_mask_visualization(
swapped_frame, target_face, mouth_mask_data
swapped_frame_result = draw_mouth_mask_visualization(
swapped_frame_result, target_face, mouth_mask_data
)
return swapped_frame
# Poisson Blending
if modules.globals.use_poisson_blending and hasattr(target_face, 'bbox'):
# Create a mask for the swapped face region for Poisson blending
# This mask should cover the area of the swapped face.
# We can use the target_face.bbox and perhaps expand it slightly,
# or use a more precise mask from face parsing if available.
# For simplicity, using a slightly feathered convex hull of landmarks.
face_mask_for_blending = np.zeros(temp_frame.shape[:2], dtype=np.uint8)
# Prioritize using the bounding box for a tighter mask
if hasattr(target_face, 'bbox'):
x1, y1, x2, y2 = target_face.bbox.astype(int)
# Ensure coordinates are within frame bounds
x1_b, y1_b = max(0, x1), max(0, y1) # Use different var names to avoid conflict with center calculation
x2_b, y2_b = min(temp_frame.shape[1], x2), min(temp_frame.shape[0], y2)
# Create a rectangular mask based on the bounding box
if x1_b < x2_b and y1_b < y2_b:
face_mask_for_blending[y1_b:y2_b, x1_b:x2_b] = 255
else:
logging.warning("Invalid bounding box for Poisson mask. Attempting landmark-based mask.")
# Fallback to landmark-based convex hull if bbox is invalid
landmarks = target_face.landmark_2d_106 if hasattr(target_face, 'landmark_2d_106') else None
if landmarks is not None and len(landmarks) > 0:
try:
hull_points = cv2.convexHull(landmarks.astype(np.int32))
cv2.fillConvexPoly(face_mask_for_blending, hull_points, 255)
except Exception as e:
logging.error(f"Could not form convex hull for Poisson mask from landmarks: {e}. Blending will be skipped.")
else:
logging.error("No valid bbox or landmarks for Poisson mask. Blending will be skipped.")
else:
# Fallback to landmark-based convex hull if no bbox attribute
landmarks = target_face.landmark_2d_106 if hasattr(target_face, 'landmark_2d_106') else None
if landmarks is not None and len(landmarks) > 0:
try:
hull_points = cv2.convexHull(landmarks.astype(np.int32))
cv2.fillConvexPoly(face_mask_for_blending, hull_points, 255)
except Exception as e:
logging.error(f"Could not form convex hull for Poisson mask from landmarks (no bbox): {e}. Blending will be skipped.")
else:
logging.error("No bbox or landmarks available for Poisson mask. Blending will be skipped.")
# Subtract ear regions if preserve_target_ears is enabled
if modules.globals.preserve_target_ears and np.any(face_mask_for_blending > 0):
mfx1, mfy1, mfx2, mfy2 = target_face.bbox.astype(int)
mfw = mfx2 - mfx1
mfh = mfy2 - mfy1
ear_w = int(mfw * modules.globals.ear_width_ratio)
ear_h = int(mfh * modules.globals.ear_height_ratio)
ear_v_offset = int(mfh * modules.globals.ear_vertical_offset_ratio)
ear_overlap = int(mfw * modules.globals.ear_horizontal_overlap_ratio)
# Person's Right Ear (image left side of face bbox)
# This region in face_mask_for_blending will be set to 0
rex1 = max(0, mfx1 - ear_w + ear_overlap)
rey1 = max(0, mfy1 + ear_v_offset)
rex2 = min(temp_frame.shape[1], mfx1 + ear_overlap) # Extends slightly into face bbox for smoother transition
rey2 = min(temp_frame.shape[0], rey1 + ear_h)
if rex1 < rex2 and rey1 < rey2:
cv2.rectangle(face_mask_for_blending, (rex1, rey1), (rex2, rey2), 0, -1)
# Person's Left Ear (image right side of face bbox)
lex1 = max(0, mfx2 - ear_overlap)
ley1 = max(0, mfy1 + ear_v_offset)
lex2 = min(temp_frame.shape[1], mfx2 + ear_w - ear_overlap)
ley2 = min(temp_frame.shape[0], ley1 + ear_h)
if lex1 < lex2 and ley1 < ley2:
cv2.rectangle(face_mask_for_blending, (lex1, ley1), (lex2, ley2), 0, -1)
# Feather the mask to smooth edges for Poisson blending
if np.any(face_mask_for_blending > 0): # Only feather if there's a mask
feather_amount = modules.globals.poisson_blending_feather_amount
if feather_amount > 0:
# Ensure kernel size is odd
kernel_size = 2 * feather_amount + 1
face_mask_for_blending = cv2.GaussianBlur(face_mask_for_blending, (kernel_size, kernel_size), 0)
# Calculate the center of the target face bbox for seamlessClone
if hasattr(target_face, 'bbox'):
x1, y1, x2, y2 = target_face.bbox.astype(int)
center_x = (x1 + x2) // 2
center_y = (y1 + y2) // 2
# Ensure center is within frame dimensions
center_x = np.clip(center_x, 0, temp_frame.shape[1] -1)
center_y = np.clip(center_y, 0, temp_frame.shape[0] -1)
center = (center_x, center_y)
# Apply Poisson blending
# swapped_frame_result is the source, temp_frame is the destination
if np.any(face_mask_for_blending > 0): # Proceed only if mask is not empty
try:
# Ensure swapped_frame_result and temp_frame are 8-bit 3-channel images
if swapped_frame_result.dtype != np.uint8:
swapped_frame_result = np.clip(swapped_frame_result, 0, 255).astype(np.uint8)
if temp_frame.dtype != np.uint8:
temp_frame_uint8 = np.clip(temp_frame, 0, 255).astype(np.uint8)
else:
temp_frame_uint8 = temp_frame
swapped_frame_result = cv2.seamlessClone(swapped_frame_result, temp_frame_uint8, face_mask_for_blending, center, cv2.NORMAL_CLONE)
except cv2.error as e:
logging.error(f"Error during Poisson blending: {e}")
# Fallback to non-blended result if seamlessClone fails
pass # swapped_frame_result remains as is
else:
logging.warning("Poisson blending mask is empty. Skipping Poisson blending.")
return swapped_frame_result
def process_frame(source_face: Face, temp_frame: Frame) -> Frame:
if modules.globals.color_correction:
temp_frame = cv2.cvtColor(temp_frame, cv2.COLOR_BGR2RGB)
# The color_correction logic was moved into swap_face.
# The initial temp_frame modification `cv2.cvtColor(temp_frame, cv2.COLOR_BGR2RGB)`
# was incorrect as it changes the color space of the whole frame before processing,
# which is not what we want for color correction of the swapped part.
# Histogram matching is now done BGR to BGR.
if modules.globals.many_faces:
many_faces = get_many_faces(temp_frame)
@ -620,3 +767,37 @@ def apply_color_transfer(source, target):
source = (source - source_mean) * (target_std / source_std) + target_mean
return cv2.cvtColor(np.clip(source, 0, 255).astype("uint8"), cv2.COLOR_LAB2BGR)
def apply_histogram_matching_color_correction(source_img: Frame, target_img: Frame) -> Frame:
"""
Applies color correction to the source image to match the target image's color distribution
using histogram matching on each color channel.
"""
corrected_img = np.zeros_like(source_img)
for i in range(source_img.shape[2]): # Iterate over color channels (B, G, R)
source_hist, _ = np.histogram(source_img[:, :, i].flatten(), 256, [0, 256])
target_hist, _ = np.histogram(target_img[:, :, i].flatten(), 256, [0, 256])
# Compute cumulative distribution functions (CDFs)
source_cdf = source_hist.cumsum()
source_cdf_normalized = source_cdf * source_hist.max() / source_cdf.max() # Normalize
target_cdf = target_hist.cumsum()
target_cdf_normalized = target_cdf * target_hist.max() / target_cdf.max() # Normalize
# Create lookup table
lookup_table = np.zeros(256, 'uint8')
gj = 0
for gi in range(256):
while gj < 256 and target_cdf_normalized[gj] < source_cdf_normalized[gi]:
gj += 1
if gj == 256: # If we reach end of target_cdf, map remaining to max value
lookup_table[gi] = 255
else:
lookup_table[gi] = gj
corrected_img[:, :, i] = cv2.LUT(source_img[:, :, i], lookup_table)
return corrected_img

View File

@ -880,84 +880,119 @@ def create_webcam_preview(camera_index: int):
PREVIEW.deiconify()
frame_processors = get_frame_processors_modules(modules.globals.frame_processors)
# Get initial source image if not mapping faces
source_image = None
prev_time = time.time()
fps_update_interval = 0.5
frame_count = 0
fps = 0
if not modules.globals.map_faces and modules.globals.source_path:
try:
loaded_cv_image = cv2.imread(modules.globals.source_path)
if loaded_cv_image is None:
update_status(f"Error: Could not read source image at {modules.globals.source_path}")
# source_image remains None
else:
source_image = get_one_face(loaded_cv_image)
if source_image is None:
update_status(f"Error: No face detected in source image {os.path.basename(modules.globals.source_path)}")
except Exception as e:
update_status(f"Exception loading source image: {str(e)[:100]}")
source_image = None # Ensure source_image is None on any error
while True:
ret, frame = cap.read()
if not ret:
break
# If source_image is still None AND a source_path was provided (meaning user intended a swap)
# AND we are not using map_faces (which handles its own source logic for sources)
if source_image is None and modules.globals.source_path and not modules.globals.map_faces:
update_status("Warning: Live preview started, but source image is invalid or has no face. No swap will occur.")
# The live preview will start, but no swap will occur if source_image is None.
temp_frame = frame.copy()
# Start the update loop
fps_data = { # Moved fps_data initialization here to be passed to the loop
"prev_time": time.time(),
"frame_count": 0,
"fps": 0.0,
"fps_update_interval": 0.5
}
update_webcam_frame_after(cap, frame_processors, source_image, fps_data)
if modules.globals.live_mirror:
temp_frame = cv2.flip(temp_frame, 1)
if modules.globals.live_resizable:
temp_frame = fit_image_to_size(
temp_frame, PREVIEW.winfo_width(), PREVIEW.winfo_height()
)
def update_webcam_frame_after(cap, frame_processors, source_image, fps_data, delay_ms=15): # Approx 66 FPS target for UI updates
global preview_label, ROOT, PREVIEW
else:
temp_frame = fit_image_to_size(
temp_frame, PREVIEW.winfo_width(), PREVIEW.winfo_height()
)
if PREVIEW.state() == "withdrawn":
cap.release()
PREVIEW.withdraw() # Ensure it's withdrawn if loop exits
return
if not modules.globals.map_faces:
if source_image is None and modules.globals.source_path:
source_image = get_one_face(cv2.imread(modules.globals.source_path))
ret, frame = cap.read()
if not ret:
# Handle camera read failure or end of stream (though for webcam, it's usually continuous)
ROOT.after(delay_ms, lambda: update_webcam_frame_after(cap, frame_processors, source_image, fps_data, delay_ms))
return
for frame_processor in frame_processors:
if frame_processor.NAME == "DLC.FACE-ENHANCER":
if modules.globals.fp_ui["face_enhancer"]:
temp_frame = frame_processor.process_frame(None, temp_frame)
else:
temp_frame = frame_processor.process_frame(source_image, temp_frame)
else:
modules.globals.target_path = None
for frame_processor in frame_processors:
if frame_processor.NAME == "DLC.FACE-ENHANCER":
if modules.globals.fp_ui["face_enhancer"]:
temp_frame = frame_processor.process_frame_v2(temp_frame)
else:
temp_frame = frame.copy()
if modules.globals.live_mirror:
temp_frame = cv2.flip(temp_frame, 1)
# Resizing based on PREVIEW window dimensions.
preview_width = PREVIEW.winfo_width()
preview_height = PREVIEW.winfo_height()
if preview_width > 1 and preview_height > 1: # Ensure valid dimensions
temp_frame = fit_image_to_size(temp_frame, preview_width, preview_height)
if not modules.globals.map_faces:
# current_source_image is the source_image passed in from create_webcam_preview
# It's determined once before the loop starts. No reloading here.
current_source_image = source_image
for frame_processor in frame_processors:
if frame_processor.NAME == "DLC.FACE-ENHANCER":
if modules.globals.fp_ui["face_enhancer"]:
temp_frame = frame_processor.process_frame(None, temp_frame)
else: # This is the face_swapper processor or other default
if current_source_image: # Only process if source_image (from create_webcam_preview) is valid
temp_frame = frame_processor.process_frame(current_source_image, temp_frame)
# If current_source_image is None, the frame is not processed by face_swapper, effectively no swap.
else:
modules.globals.target_path = None
for frame_processor in frame_processors:
if frame_processor.NAME == "DLC.FACE-ENHANCER":
if modules.globals.fp_ui["face_enhancer"]:
temp_frame = frame_processor.process_frame_v2(temp_frame)
else:
temp_frame = frame_processor.process_frame_v2(temp_frame)
# Calculate and display FPS
current_time = time.time()
frame_count += 1
if current_time - prev_time >= fps_update_interval:
fps = frame_count / (current_time - prev_time)
frame_count = 0
prev_time = current_time
current_time = time.time()
fps_data["frame_count"] += 1
time_diff = current_time - fps_data["prev_time"]
if modules.globals.show_fps:
cv2.putText(
temp_frame,
f"FPS: {fps:.1f}",
(10, 30),
cv2.FONT_HERSHEY_SIMPLEX,
1,
(0, 255, 0),
2,
)
if time_diff >= fps_data.get("fps_update_interval", 0.5):
fps_data["fps"] = fps_data["frame_count"] / time_diff
fps_data["frame_count"] = 0
fps_data["prev_time"] = current_time
image = cv2.cvtColor(temp_frame, cv2.COLOR_BGR2RGB)
image = Image.fromarray(image)
image = ImageOps.contain(
image, (temp_frame.shape[1], temp_frame.shape[0]), Image.LANCZOS
if modules.globals.show_fps:
cv2.putText(
temp_frame,
f"FPS: {fps_data['fps']:.1f}",
(10, 30),
cv2.FONT_HERSHEY_SIMPLEX,
1,
(0, 255, 0),
2,
)
image = ctk.CTkImage(image, size=image.size)
preview_label.configure(image=image)
ROOT.update()
if PREVIEW.state() == "withdrawn":
break
if temp_frame is not None and temp_frame.size > 0:
image = cv2.cvtColor(temp_frame, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(image)
cap.release()
PREVIEW.withdraw()
contained_image = ImageOps.contain(
pil_image, (temp_frame.shape[1], temp_frame.shape[0]), Image.LANCZOS
)
ctk_image = ctk.CTkImage(contained_image, size=contained_image.size)
preview_label.configure(image=ctk_image)
else:
pass
ROOT.after(delay_ms, lambda: update_webcam_frame_after(cap, frame_processors, source_image, fps_data, delay_ms))
def create_source_target_popup_for_webcam(

View File

@ -12,83 +12,142 @@ if platform.system() == "Windows":
class VideoCapturer:
def __init__(self, device_index: int):
self.device_index = device_index
self.frame_callback = None
self._current_frame = None
self._frame_ready = threading.Event()
self._latest_frame: Optional[np.ndarray] = None
self._frame_lock = threading.Lock()
self.is_running = False
self.cap = None
self.cap: Optional[cv2.VideoCapture] = None
self._capture_thread: Optional[threading.Thread] = None
# Initialize Windows-specific components if on Windows
if platform.system() == "Windows":
self.graph = FilterGraph()
# Verify device exists
devices = self.graph.get_input_devices()
if self.device_index >= len(devices):
raise ValueError(
f"Invalid device index {device_index}. Available devices: {len(devices)}"
)
try:
self.graph = FilterGraph()
# Verify device exists
devices = self.graph.get_input_devices()
if self.device_index >= len(devices):
# Fallback or logging, rather than immediate raise for flexibility
print(f"Warning: Device index {device_index} might be out of range. Available: {len(devices)}. Will attempt to open anyway.")
except Exception as e:
print(f"Warning: Could not initialize FilterGraph for device enumeration: {e}")
self.graph = None
def _capture_loop(self) -> None:
while self.is_running and self.cap is not None:
try:
ret, frame = self.cap.read()
if ret:
with self._frame_lock:
self._latest_frame = frame
else:
# Handle camera read failure, e.g., camera disconnected
print("Warning: Failed to read frame from camera in capture loop.")
# Small sleep to prevent tight loop on continuous read errors
threading.Event().wait(0.1)
except Exception as e:
print(f"Error in capture loop: {e}")
self.is_running = False # Stop loop on critical error
break
# Small sleep to yield execution and not busy-wait if camera FPS is low
# Adjust sleep time as needed; too high adds latency, too low uses more CPU.
threading.Event().wait(0.001) # 1 ms sleep
def start(self, width: int = 960, height: int = 540, fps: int = 60) -> bool:
"""Initialize and start video capture"""
"""Initialize and start video capture in a separate thread."""
if self.is_running:
print("Capture already running.")
return True
try:
if platform.system() == "Windows":
# Windows-specific capture methods
capture_methods = [
(self.device_index, cv2.CAP_DSHOW), # Try DirectShow first
(self.device_index, cv2.CAP_ANY), # Then try default backend
(-1, cv2.CAP_ANY), # Try -1 as fallback
(0, cv2.CAP_ANY), # Finally try 0 without specific backend
(self.device_index, cv2.CAP_DSHOW),
(self.device_index, cv2.CAP_MSMF),
(self.device_index, cv2.CAP_ANY),
(-1, cv2.CAP_ANY),
(0, cv2.CAP_ANY)
]
for dev_id, backend in capture_methods:
try:
self.cap = cv2.VideoCapture(dev_id, backend)
if self.cap.isOpened():
if self.cap and self.cap.isOpened():
print(f"Successfully opened camera {dev_id} with backend {backend}")
break
self.cap.release()
if self.cap:
self.cap.release()
self.cap = None
except Exception:
continue
else:
# Unix-like systems (Linux/Mac) capture method
else: # Unix-like
self.cap = cv2.VideoCapture(self.device_index)
if not self.cap or not self.cap.isOpened():
raise RuntimeError("Failed to open camera")
raise RuntimeError(f"Failed to open camera with device index {self.device_index} using available methods.")
# Configure format
# Note: Setting properties might not always work or might reset after opening.
# It's often better to request a format the camera natively supports if known.
self.cap.set(cv2.CAP_PROP_FRAME_WIDTH, width)
self.cap.set(cv2.CAP_PROP_FRAME_HEIGHT, height)
self.cap.set(cv2.CAP_PROP_FPS, fps)
# Verify settings if possible (actual values might differ)
actual_width = self.cap.get(cv2.CAP_PROP_FRAME_WIDTH)
actual_height = self.cap.get(cv2.CAP_PROP_FRAME_HEIGHT)
actual_fps = self.cap.get(cv2.CAP_PROP_FPS)
print(f"Requested: {width}x{height}@{fps}fps. Actual: {actual_width}x{actual_height}@{actual_fps}fps")
self.is_running = True
self._capture_thread = threading.Thread(target=self._capture_loop, daemon=True)
self._capture_thread.start()
# Wait briefly for the first frame to be captured, makes initial read() more likely to succeed.
# This is optional and can be adjusted or removed.
threading.Event().wait(0.5) # Wait up to 0.5 seconds
return True
except Exception as e:
print(f"Failed to start capture: {str(e)}")
if self.cap:
self.cap.release()
self.cap = None
self.is_running = False
return False
def read(self) -> Tuple[bool, Optional[np.ndarray]]:
"""Read a frame from the camera"""
if not self.is_running or self.cap is None:
"""Read the latest frame from the camera (non-blocking)."""
if not self.is_running:
return False, None
ret, frame = self.cap.read()
if ret:
self._current_frame = frame
if self.frame_callback:
self.frame_callback(frame)
return True, frame
return False, None
frame_copy = None
with self._frame_lock:
if self._latest_frame is not None:
frame_copy = self._latest_frame.copy()
if frame_copy is not None:
return True, frame_copy
else:
# No frame available yet, or thread stopped
return False, None
def release(self) -> None:
"""Stop capture and release resources"""
if self.is_running and self.cap is not None:
"""Stop capture thread and release resources."""
if self.is_running:
self.is_running = False # Signal the thread to stop
if self._capture_thread is not None:
self._capture_thread.join(timeout=1.0) # Wait for thread to finish
if self._capture_thread.is_alive():
print("Warning: Capture thread did not terminate cleanly.")
self._capture_thread = None
if self.cap is not None:
self.cap.release()
self.is_running = False
self.cap = None
def set_frame_callback(self, callback: Callable[[np.ndarray], None]) -> None:
"""Set callback for frame processing"""
self.frame_callback = callback
with self._frame_lock: # Clear last frame
self._latest_frame = None
print("Video capture released.")
# frame_callback is removed as direct polling via read() is now non-blocking and preferred with threaded capture.
# If a callback mechanism is still desired, it would need to be integrated carefully with the thread.