Add Mouth Mask Feature
							parent
							
								
									6f6f93a4ad
								
							
						
					
					
						commit
						29c9c119d3
					
				|  | @ -36,3 +36,8 @@ fp_ui: Dict[str, bool] = {"face_enhancer": False} | |||
| camera_input_combobox = None | ||||
| webcam_preview_running = False | ||||
| show_fps = False | ||||
| mouth_mask = False | ||||
| show_mouth_mask_box = False | ||||
| mask_feather_ratio = 8 | ||||
| mask_down_size = 0.50 | ||||
| mask_size = 1 | ||||
|  |  | |||
|  | @ -2,35 +2,49 @@ from typing import Any, List | |||
| import cv2 | ||||
| import insightface | ||||
| import threading | ||||
| 
 | ||||
| import numpy as np | ||||
| import modules.globals | ||||
| import modules.processors.frame.core | ||||
| from modules.core import update_status | ||||
| from modules.face_analyser import get_one_face, get_many_faces, default_source_face | ||||
| from modules.typing import Face, Frame | ||||
| from modules.utilities import conditional_download, resolve_relative_path, is_image, is_video | ||||
| from modules.utilities import ( | ||||
|     conditional_download, | ||||
|     resolve_relative_path, | ||||
|     is_image, | ||||
|     is_video, | ||||
| ) | ||||
| from modules.cluster_analysis import find_closest_centroid | ||||
| 
 | ||||
| FACE_SWAPPER = None | ||||
| THREAD_LOCK = threading.Lock() | ||||
| NAME = 'DLC.FACE-SWAPPER' | ||||
| NAME = "DLC.FACE-SWAPPER" | ||||
| 
 | ||||
| 
 | ||||
| def pre_check() -> bool: | ||||
|     download_directory_path = resolve_relative_path('../models') | ||||
|     conditional_download(download_directory_path, ['https://huggingface.co/hacksider/deep-live-cam/blob/main/inswapper_128_fp16.onnx']) | ||||
|     download_directory_path = resolve_relative_path("../models") | ||||
|     conditional_download( | ||||
|         download_directory_path, | ||||
|         [ | ||||
|             "https://huggingface.co/hacksider/deep-live-cam/blob/main/inswapper_128_fp16.onnx" | ||||
|         ], | ||||
|     ) | ||||
|     return True | ||||
| 
 | ||||
| 
 | ||||
| def pre_start() -> bool: | ||||
|     if not modules.globals.map_faces and not is_image(modules.globals.source_path): | ||||
|         update_status('Select an image for source path.', NAME) | ||||
|         update_status("Select an image for source path.", NAME) | ||||
|         return False | ||||
|     elif not modules.globals.map_faces and not get_one_face(cv2.imread(modules.globals.source_path)): | ||||
|         update_status('No face in source path detected.', NAME) | ||||
|     elif not modules.globals.map_faces and not get_one_face( | ||||
|         cv2.imread(modules.globals.source_path) | ||||
|     ): | ||||
|         update_status("No face in source path detected.", NAME) | ||||
|         return False | ||||
|     if not is_image(modules.globals.target_path) and not is_video(modules.globals.target_path): | ||||
|         update_status('Select an image or video for target path.', NAME) | ||||
|     if not is_image(modules.globals.target_path) and not is_video( | ||||
|         modules.globals.target_path | ||||
|     ): | ||||
|         update_status("Select an image or video for target path.", NAME) | ||||
|         return False | ||||
|     return True | ||||
| 
 | ||||
|  | @ -40,17 +54,45 @@ def get_face_swapper() -> Any: | |||
| 
 | ||||
|     with THREAD_LOCK: | ||||
|         if FACE_SWAPPER is None: | ||||
|             model_path = resolve_relative_path('../models/inswapper_128_fp16.onnx') | ||||
|             FACE_SWAPPER = insightface.model_zoo.get_model(model_path, providers=modules.globals.execution_providers) | ||||
|             model_path = resolve_relative_path("../models/inswapper_128_fp16.onnx") | ||||
|             FACE_SWAPPER = insightface.model_zoo.get_model( | ||||
|                 model_path, providers=modules.globals.execution_providers | ||||
|             ) | ||||
|     return FACE_SWAPPER | ||||
| 
 | ||||
| 
 | ||||
| def swap_face(source_face: Face, target_face: Face, temp_frame: Frame) -> Frame: | ||||
|     return get_face_swapper().get(temp_frame, target_face, source_face, paste_back=True) | ||||
|     face_swapper = get_face_swapper() | ||||
| 
 | ||||
|     # Apply the face swap | ||||
|     swapped_frame = face_swapper.get( | ||||
|         temp_frame, target_face, source_face, paste_back=True | ||||
|     ) | ||||
| 
 | ||||
|     if modules.globals.mouth_mask: | ||||
|         # Create a mask for the target face | ||||
|         face_mask = create_face_mask(target_face, temp_frame) | ||||
| 
 | ||||
|         # Create the mouth mask | ||||
|         mouth_mask, mouth_cutout, mouth_box, lower_lip_polygon = ( | ||||
|             create_lower_mouth_mask(target_face, temp_frame) | ||||
|         ) | ||||
| 
 | ||||
|         # Apply the mouth area | ||||
|         swapped_frame = apply_mouth_area( | ||||
|             swapped_frame, mouth_cutout, mouth_box, face_mask, lower_lip_polygon | ||||
|         ) | ||||
| 
 | ||||
|         if modules.globals.show_mouth_mask_box: | ||||
|             mouth_mask_data = (mouth_mask, mouth_cutout, mouth_box, lower_lip_polygon) | ||||
|             swapped_frame = draw_mouth_mask_visualization( | ||||
|                 swapped_frame, target_face, mouth_mask_data | ||||
|             ) | ||||
| 
 | ||||
|     return swapped_frame | ||||
| 
 | ||||
| 
 | ||||
| def process_frame(source_face: Face, temp_frame: Frame) -> Frame: | ||||
|     # Ensure the frame is in RGB format if color correction is enabled | ||||
|     if modules.globals.color_correction: | ||||
|         temp_frame = cv2.cvtColor(temp_frame, cv2.COLOR_BGR2RGB) | ||||
| 
 | ||||
|  | @ -71,35 +113,44 @@ def process_frame_v2(temp_frame: Frame, temp_frame_path: str = "") -> Frame: | |||
|         if modules.globals.many_faces: | ||||
|             source_face = default_source_face() | ||||
|             for map in modules.globals.souce_target_map: | ||||
|                 target_face = map['target']['face'] | ||||
|                 target_face = map["target"]["face"] | ||||
|                 temp_frame = swap_face(source_face, target_face, temp_frame) | ||||
| 
 | ||||
|         elif not modules.globals.many_faces: | ||||
|             for map in modules.globals.souce_target_map: | ||||
|                 if "source" in map: | ||||
|                     source_face = map['source']['face'] | ||||
|                     target_face = map['target']['face']                | ||||
|                     source_face = map["source"]["face"] | ||||
|                     target_face = map["target"]["face"] | ||||
|                     temp_frame = swap_face(source_face, target_face, temp_frame) | ||||
| 
 | ||||
|     elif is_video(modules.globals.target_path): | ||||
|         if modules.globals.many_faces: | ||||
|             source_face = default_source_face() | ||||
|             for map in modules.globals.souce_target_map: | ||||
|                 target_frame = [f for f in map['target_faces_in_frame'] if f['location'] == temp_frame_path] | ||||
|                 target_frame = [ | ||||
|                     f | ||||
|                     for f in map["target_faces_in_frame"] | ||||
|                     if f["location"] == temp_frame_path | ||||
|                 ] | ||||
| 
 | ||||
|                 for frame in target_frame: | ||||
|                     for target_face in frame['faces']: | ||||
|                     for target_face in frame["faces"]: | ||||
|                         temp_frame = swap_face(source_face, target_face, temp_frame) | ||||
| 
 | ||||
|         elif not modules.globals.many_faces: | ||||
|             for map in modules.globals.souce_target_map: | ||||
|                 if "source" in map: | ||||
|                     target_frame = [f for f in map['target_faces_in_frame'] if f['location'] == temp_frame_path] | ||||
|                     source_face = map['source']['face'] | ||||
|                     target_frame = [ | ||||
|                         f | ||||
|                         for f in map["target_faces_in_frame"] | ||||
|                         if f["location"] == temp_frame_path | ||||
|                     ] | ||||
|                     source_face = map["source"]["face"] | ||||
| 
 | ||||
|                     for frame in target_frame: | ||||
|                         for target_face in frame['faces']: | ||||
|                         for target_face in frame["faces"]: | ||||
|                             temp_frame = swap_face(source_face, target_face, temp_frame) | ||||
| 
 | ||||
|     else: | ||||
|         detected_faces = get_many_faces(temp_frame) | ||||
|         if modules.globals.many_faces: | ||||
|  | @ -110,25 +161,46 @@ def process_frame_v2(temp_frame: Frame, temp_frame_path: str = "") -> Frame: | |||
| 
 | ||||
|         elif not modules.globals.many_faces: | ||||
|             if detected_faces: | ||||
|                 if len(detected_faces) <= len(modules.globals.simple_map['target_embeddings']): | ||||
|                 if len(detected_faces) <= len( | ||||
|                     modules.globals.simple_map["target_embeddings"] | ||||
|                 ): | ||||
|                     for detected_face in detected_faces: | ||||
|                         closest_centroid_index, _ = find_closest_centroid(modules.globals.simple_map['target_embeddings'], detected_face.normed_embedding) | ||||
|                         closest_centroid_index, _ = find_closest_centroid( | ||||
|                             modules.globals.simple_map["target_embeddings"], | ||||
|                             detected_face.normed_embedding, | ||||
|                         ) | ||||
| 
 | ||||
|                         temp_frame = swap_face(modules.globals.simple_map['source_faces'][closest_centroid_index], detected_face, temp_frame) | ||||
|                         temp_frame = swap_face( | ||||
|                             modules.globals.simple_map["source_faces"][ | ||||
|                                 closest_centroid_index | ||||
|                             ], | ||||
|                             detected_face, | ||||
|                             temp_frame, | ||||
|                         ) | ||||
|                 else: | ||||
|                     detected_faces_centroids = [] | ||||
|                     for face in detected_faces: | ||||
|                         detected_faces_centroids.append(face.normed_embedding) | ||||
|                     i = 0 | ||||
|                     for target_embedding in modules.globals.simple_map['target_embeddings']: | ||||
|                         closest_centroid_index, _ = find_closest_centroid(detected_faces_centroids, target_embedding) | ||||
|                     for target_embedding in modules.globals.simple_map[ | ||||
|                         "target_embeddings" | ||||
|                     ]: | ||||
|                         closest_centroid_index, _ = find_closest_centroid( | ||||
|                             detected_faces_centroids, target_embedding | ||||
|                         ) | ||||
| 
 | ||||
|                         temp_frame = swap_face(modules.globals.simple_map['source_faces'][i], detected_faces[closest_centroid_index], temp_frame) | ||||
|                         temp_frame = swap_face( | ||||
|                             modules.globals.simple_map["source_faces"][i], | ||||
|                             detected_faces[closest_centroid_index], | ||||
|                             temp_frame, | ||||
|                         ) | ||||
|                         i += 1 | ||||
|     return temp_frame | ||||
| 
 | ||||
| 
 | ||||
| def process_frames(source_path: str, temp_frame_paths: List[str], progress: Any = None) -> None: | ||||
| def process_frames( | ||||
|     source_path: str, temp_frame_paths: List[str], progress: Any = None | ||||
| ) -> None: | ||||
|     if not modules.globals.map_faces: | ||||
|         source_face = get_one_face(cv2.imread(source_path)) | ||||
|         for temp_frame_path in temp_frame_paths: | ||||
|  | @ -162,7 +234,9 @@ def process_image(source_path: str, target_path: str, output_path: str) -> None: | |||
|         cv2.imwrite(output_path, result) | ||||
|     else: | ||||
|         if modules.globals.many_faces: | ||||
|             update_status('Many faces enabled. Using first source image. Progressing...', NAME) | ||||
|             update_status( | ||||
|                 "Many faces enabled. Using first source image. Progressing...", NAME | ||||
|             ) | ||||
|         target_frame = cv2.imread(output_path) | ||||
|         result = process_frame_v2(target_frame) | ||||
|         cv2.imwrite(output_path, result) | ||||
|  | @ -170,5 +244,367 @@ def process_image(source_path: str, target_path: str, output_path: str) -> None: | |||
| 
 | ||||
| def process_video(source_path: str, temp_frame_paths: List[str]) -> None: | ||||
|     if modules.globals.map_faces and modules.globals.many_faces: | ||||
|         update_status('Many faces enabled. Using first source image. Progressing...', NAME) | ||||
|     modules.processors.frame.core.process_video(source_path, temp_frame_paths, process_frames) | ||||
|         update_status( | ||||
|             "Many faces enabled. Using first source image. Progressing...", NAME | ||||
|         ) | ||||
|     modules.processors.frame.core.process_video( | ||||
|         source_path, temp_frame_paths, process_frames | ||||
|     ) | ||||
| 
 | ||||
| 
 | ||||
| def create_lower_mouth_mask( | ||||
|     face: Face, frame: Frame | ||||
| ) -> (np.ndarray, np.ndarray, tuple, np.ndarray): | ||||
|     mask = np.zeros(frame.shape[:2], dtype=np.uint8) | ||||
|     mouth_cutout = None | ||||
|     landmarks = face.landmark_2d_106 | ||||
|     if landmarks is not None: | ||||
|         #                  0  1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18 19 20 | ||||
|         lower_lip_order = [ | ||||
|             65, | ||||
|             66, | ||||
|             62, | ||||
|             70, | ||||
|             69, | ||||
|             18, | ||||
|             19, | ||||
|             20, | ||||
|             21, | ||||
|             22, | ||||
|             23, | ||||
|             24, | ||||
|             0, | ||||
|             8, | ||||
|             7, | ||||
|             6, | ||||
|             5, | ||||
|             4, | ||||
|             3, | ||||
|             2, | ||||
|             65, | ||||
|         ] | ||||
|         lower_lip_landmarks = landmarks[lower_lip_order].astype( | ||||
|             np.float32 | ||||
|         )  # Use float for precise calculations | ||||
| 
 | ||||
|         # Calculate the center of the landmarks | ||||
|         center = np.mean(lower_lip_landmarks, axis=0) | ||||
| 
 | ||||
|         # Expand the landmarks outward | ||||
|         expansion_factor = ( | ||||
|             1 + modules.globals.mask_down_size | ||||
|         )  # Adjust this for more or less expansion | ||||
|         expanded_landmarks = (lower_lip_landmarks - center) * expansion_factor + center | ||||
| 
 | ||||
|         # Extend the top lip part | ||||
|         toplip_indices = [ | ||||
|             20, | ||||
|             0, | ||||
|             1, | ||||
|             2, | ||||
|             3, | ||||
|             4, | ||||
|             5, | ||||
|         ]  # Indices for landmarks 2, 65, 66, 62, 70, 69, 18 | ||||
|         toplip_extension = ( | ||||
|             modules.globals.mask_size * 0.5 | ||||
|         )  # Adjust this factor to control the extension | ||||
|         for idx in toplip_indices: | ||||
|             direction = expanded_landmarks[idx] - center | ||||
|             direction = direction / np.linalg.norm(direction) | ||||
|             expanded_landmarks[idx] += direction * toplip_extension | ||||
| 
 | ||||
|         # Extend the bottom part (chin area) | ||||
|         chin_indices = [ | ||||
|             11, | ||||
|             12, | ||||
|             13, | ||||
|             14, | ||||
|             15, | ||||
|             16, | ||||
|         ]  # Indices for landmarks 21, 22, 23, 24, 0, 8 | ||||
|         chin_extension = 2 * 0.2  # Adjust this factor to control the extension | ||||
|         for idx in chin_indices: | ||||
|             expanded_landmarks[idx][1] += ( | ||||
|                 expanded_landmarks[idx][1] - center[1] | ||||
|             ) * chin_extension | ||||
| 
 | ||||
|         # Convert back to integer coordinates | ||||
|         expanded_landmarks = expanded_landmarks.astype(np.int32) | ||||
| 
 | ||||
|         # Calculate bounding box for the expanded lower mouth | ||||
|         min_x, min_y = np.min(expanded_landmarks, axis=0) | ||||
|         max_x, max_y = np.max(expanded_landmarks, axis=0) | ||||
| 
 | ||||
|         # Add some padding to the bounding box | ||||
|         padding = int((max_x - min_x) * 0.1)  # 10% padding | ||||
|         min_x = max(0, min_x - padding) | ||||
|         min_y = max(0, min_y - padding) | ||||
|         max_x = min(frame.shape[1], max_x + padding) | ||||
|         max_y = min(frame.shape[0], max_y + padding) | ||||
| 
 | ||||
|         # Ensure the bounding box dimensions are valid | ||||
|         if max_x <= min_x or max_y <= min_y: | ||||
|             if (max_x - min_x) <= 1: | ||||
|                 max_x = min_x + 1 | ||||
|             if (max_y - min_y) <= 1: | ||||
|                 max_y = min_y + 1 | ||||
| 
 | ||||
|         # Create the mask | ||||
|         mask_roi = np.zeros((max_y - min_y, max_x - min_x), dtype=np.uint8) | ||||
|         cv2.fillPoly(mask_roi, [expanded_landmarks - [min_x, min_y]], 255) | ||||
| 
 | ||||
|         # Apply Gaussian blur to soften the mask edges | ||||
|         mask_roi = cv2.GaussianBlur(mask_roi, (15, 15), 5) | ||||
| 
 | ||||
|         # Place the mask ROI in the full-sized mask | ||||
|         mask[min_y:max_y, min_x:max_x] = mask_roi | ||||
| 
 | ||||
|         # Extract the masked area from the frame | ||||
|         mouth_cutout = frame[min_y:max_y, min_x:max_x].copy() | ||||
| 
 | ||||
|         # Return the expanded lower lip polygon in original frame coordinates | ||||
|         lower_lip_polygon = expanded_landmarks | ||||
| 
 | ||||
|     return mask, mouth_cutout, (min_x, min_y, max_x, max_y), lower_lip_polygon | ||||
| 
 | ||||
| 
 | ||||
| def draw_mouth_mask_visualization( | ||||
|     frame: Frame, face: Face, mouth_mask_data: tuple | ||||
| ) -> Frame: | ||||
|     landmarks = face.landmark_2d_106 | ||||
|     if landmarks is not None and mouth_mask_data is not None: | ||||
|         mask, mouth_cutout, (min_x, min_y, max_x, max_y), lower_lip_polygon = ( | ||||
|             mouth_mask_data | ||||
|         ) | ||||
| 
 | ||||
|         vis_frame = frame.copy() | ||||
| 
 | ||||
|         # Ensure coordinates are within frame bounds | ||||
|         height, width = vis_frame.shape[:2] | ||||
|         min_x, min_y = max(0, min_x), max(0, min_y) | ||||
|         max_x, max_y = min(width, max_x), min(height, max_y) | ||||
| 
 | ||||
|         # Adjust mask to match the region size | ||||
|         mask_region = mask[0 : max_y - min_y, 0 : max_x - min_x] | ||||
| 
 | ||||
|         # Remove the color mask overlay | ||||
|         # color_mask = cv2.applyColorMap((mask_region * 255).astype(np.uint8), cv2.COLORMAP_JET) | ||||
| 
 | ||||
|         # Ensure shapes match before blending | ||||
|         vis_region = vis_frame[min_y:max_y, min_x:max_x] | ||||
|         # Remove blending with color_mask | ||||
|         # if vis_region.shape[:2] == color_mask.shape[:2]: | ||||
|         #     blended = cv2.addWeighted(vis_region, 0.7, color_mask, 0.3, 0) | ||||
|         #     vis_frame[min_y:max_y, min_x:max_x] = blended | ||||
| 
 | ||||
|         # Draw the lower lip polygon | ||||
|         cv2.polylines(vis_frame, [lower_lip_polygon], True, (0, 255, 0), 2) | ||||
| 
 | ||||
|         # Remove the red box | ||||
|         # cv2.rectangle(vis_frame, (min_x, min_y), (max_x, max_y), (0, 0, 255), 2) | ||||
| 
 | ||||
|         # Visualize the feathered mask | ||||
|         feather_amount = max( | ||||
|             1, | ||||
|             min( | ||||
|                 30, | ||||
|                 (max_x - min_x) // modules.globals.mask_feather_ratio, | ||||
|                 (max_y - min_y) // modules.globals.mask_feather_ratio, | ||||
|             ), | ||||
|         ) | ||||
|         # Ensure kernel size is odd | ||||
|         kernel_size = 2 * feather_amount + 1 | ||||
|         feathered_mask = cv2.GaussianBlur( | ||||
|             mask_region.astype(float), (kernel_size, kernel_size), 0 | ||||
|         ) | ||||
|         feathered_mask = (feathered_mask / feathered_mask.max() * 255).astype(np.uint8) | ||||
|         # Remove the feathered mask color overlay | ||||
|         # color_feathered_mask = cv2.applyColorMap(feathered_mask, cv2.COLORMAP_VIRIDIS) | ||||
| 
 | ||||
|         # Ensure shapes match before blending feathered mask | ||||
|         # if vis_region.shape == color_feathered_mask.shape: | ||||
|         #     blended_feathered = cv2.addWeighted(vis_region, 0.7, color_feathered_mask, 0.3, 0) | ||||
|         #     vis_frame[min_y:max_y, min_x:max_x] = blended_feathered | ||||
| 
 | ||||
|         # Add labels | ||||
|         cv2.putText( | ||||
|             vis_frame, | ||||
|             "Lower Mouth Mask", | ||||
|             (min_x, min_y - 10), | ||||
|             cv2.FONT_HERSHEY_SIMPLEX, | ||||
|             0.5, | ||||
|             (255, 255, 255), | ||||
|             1, | ||||
|         ) | ||||
|         cv2.putText( | ||||
|             vis_frame, | ||||
|             "Feathered Mask", | ||||
|             (min_x, max_y + 20), | ||||
|             cv2.FONT_HERSHEY_SIMPLEX, | ||||
|             0.5, | ||||
|             (255, 255, 255), | ||||
|             1, | ||||
|         ) | ||||
| 
 | ||||
|         return vis_frame | ||||
|     return frame | ||||
| 
 | ||||
| 
 | ||||
| def apply_mouth_area( | ||||
|     frame: np.ndarray, | ||||
|     mouth_cutout: np.ndarray, | ||||
|     mouth_box: tuple, | ||||
|     face_mask: np.ndarray, | ||||
|     mouth_polygon: np.ndarray, | ||||
| ) -> np.ndarray: | ||||
|     min_x, min_y, max_x, max_y = mouth_box | ||||
|     box_width = max_x - min_x | ||||
|     box_height = max_y - min_y | ||||
| 
 | ||||
|     if ( | ||||
|         mouth_cutout is None | ||||
|         or box_width is None | ||||
|         or box_height is None | ||||
|         or face_mask is None | ||||
|         or mouth_polygon is None | ||||
|     ): | ||||
|         return frame | ||||
| 
 | ||||
|     try: | ||||
|         resized_mouth_cutout = cv2.resize(mouth_cutout, (box_width, box_height)) | ||||
|         roi = frame[min_y:max_y, min_x:max_x] | ||||
| 
 | ||||
|         if roi.shape != resized_mouth_cutout.shape: | ||||
|             resized_mouth_cutout = cv2.resize( | ||||
|                 resized_mouth_cutout, (roi.shape[1], roi.shape[0]) | ||||
|             ) | ||||
| 
 | ||||
|         color_corrected_mouth = apply_color_transfer(resized_mouth_cutout, roi) | ||||
| 
 | ||||
|         # Use the provided mouth polygon to create the mask | ||||
|         polygon_mask = np.zeros(roi.shape[:2], dtype=np.uint8) | ||||
|         adjusted_polygon = mouth_polygon - [min_x, min_y] | ||||
|         cv2.fillPoly(polygon_mask, [adjusted_polygon], 255) | ||||
| 
 | ||||
|         # Apply feathering to the polygon mask | ||||
|         feather_amount = min( | ||||
|             30, | ||||
|             box_width // modules.globals.mask_feather_ratio, | ||||
|             box_height // modules.globals.mask_feather_ratio, | ||||
|         ) | ||||
|         feathered_mask = cv2.GaussianBlur( | ||||
|             polygon_mask.astype(float), (0, 0), feather_amount | ||||
|         ) | ||||
|         feathered_mask = feathered_mask / feathered_mask.max() | ||||
| 
 | ||||
|         face_mask_roi = face_mask[min_y:max_y, min_x:max_x] | ||||
|         combined_mask = feathered_mask * (face_mask_roi / 255.0) | ||||
| 
 | ||||
|         combined_mask = combined_mask[:, :, np.newaxis] | ||||
|         blended = ( | ||||
|             color_corrected_mouth * combined_mask + roi * (1 - combined_mask) | ||||
|         ).astype(np.uint8) | ||||
| 
 | ||||
|         # Apply face mask to blended result | ||||
|         face_mask_3channel = ( | ||||
|             np.repeat(face_mask_roi[:, :, np.newaxis], 3, axis=2) / 255.0 | ||||
|         ) | ||||
|         final_blend = blended * face_mask_3channel + roi * (1 - face_mask_3channel) | ||||
| 
 | ||||
|         frame[min_y:max_y, min_x:max_x] = final_blend.astype(np.uint8) | ||||
|     except Exception as e: | ||||
|         pass | ||||
| 
 | ||||
|     return frame | ||||
| 
 | ||||
| 
 | ||||
| def create_face_mask(face: Face, frame: Frame) -> np.ndarray: | ||||
|     mask = np.zeros(frame.shape[:2], dtype=np.uint8) | ||||
|     landmarks = face.landmark_2d_106 | ||||
|     if landmarks is not None: | ||||
|         # Convert landmarks to int32 | ||||
|         landmarks = landmarks.astype(np.int32) | ||||
| 
 | ||||
|         # Extract facial features | ||||
|         right_side_face = landmarks[0:16] | ||||
|         left_side_face = landmarks[17:32] | ||||
|         right_eye = landmarks[33:42] | ||||
|         right_eye_brow = landmarks[43:51] | ||||
|         left_eye = landmarks[87:96] | ||||
|         left_eye_brow = landmarks[97:105] | ||||
| 
 | ||||
|         # Calculate forehead extension | ||||
|         right_eyebrow_top = np.min(right_eye_brow[:, 1]) | ||||
|         left_eyebrow_top = np.min(left_eye_brow[:, 1]) | ||||
|         eyebrow_top = min(right_eyebrow_top, left_eyebrow_top) | ||||
| 
 | ||||
|         face_top = np.min([right_side_face[0, 1], left_side_face[-1, 1]]) | ||||
|         forehead_height = face_top - eyebrow_top | ||||
|         extended_forehead_height = int(forehead_height * 5.0)  # Extend by 50% | ||||
| 
 | ||||
|         # Create forehead points | ||||
|         forehead_left = right_side_face[0].copy() | ||||
|         forehead_right = left_side_face[-1].copy() | ||||
|         forehead_left[1] -= extended_forehead_height | ||||
|         forehead_right[1] -= extended_forehead_height | ||||
| 
 | ||||
|         # Combine all points to create the face outline | ||||
|         face_outline = np.vstack( | ||||
|             [ | ||||
|                 [forehead_left], | ||||
|                 right_side_face, | ||||
|                 left_side_face[ | ||||
|                     ::-1 | ||||
|                 ],  # Reverse left side to create a continuous outline | ||||
|                 [forehead_right], | ||||
|             ] | ||||
|         ) | ||||
| 
 | ||||
|         # Calculate padding | ||||
|         padding = int( | ||||
|             np.linalg.norm(right_side_face[0] - left_side_face[-1]) * 0.05 | ||||
|         )  # 5% of face width | ||||
| 
 | ||||
|         # Create a slightly larger convex hull for padding | ||||
|         hull = cv2.convexHull(face_outline) | ||||
|         hull_padded = [] | ||||
|         for point in hull: | ||||
|             x, y = point[0] | ||||
|             center = np.mean(face_outline, axis=0) | ||||
|             direction = np.array([x, y]) - center | ||||
|             direction = direction / np.linalg.norm(direction) | ||||
|             padded_point = np.array([x, y]) + direction * padding | ||||
|             hull_padded.append(padded_point) | ||||
| 
 | ||||
|         hull_padded = np.array(hull_padded, dtype=np.int32) | ||||
| 
 | ||||
|         # Fill the padded convex hull | ||||
|         cv2.fillConvexPoly(mask, hull_padded, 255) | ||||
| 
 | ||||
|         # Smooth the mask edges | ||||
|         mask = cv2.GaussianBlur(mask, (5, 5), 3) | ||||
| 
 | ||||
|     return mask | ||||
| 
 | ||||
| 
 | ||||
| def apply_color_transfer(source, target): | ||||
|     """ | ||||
|     Apply color transfer from target to source image | ||||
|     """ | ||||
|     source = cv2.cvtColor(source, cv2.COLOR_BGR2LAB).astype("float32") | ||||
|     target = cv2.cvtColor(target, cv2.COLOR_BGR2LAB).astype("float32") | ||||
| 
 | ||||
|     source_mean, source_std = cv2.meanStdDev(source) | ||||
|     target_mean, target_std = cv2.meanStdDev(target) | ||||
| 
 | ||||
|     # Reshape mean and std to be broadcastable | ||||
|     source_mean = source_mean.reshape(1, 1, 3) | ||||
|     source_std = source_std.reshape(1, 1, 3) | ||||
|     target_mean = target_mean.reshape(1, 1, 3) | ||||
|     target_std = target_std.reshape(1, 1, 3) | ||||
| 
 | ||||
|     # Perform the color transfer | ||||
|     source = (source - source_mean) * (target_std / source_std) + target_mean | ||||
| 
 | ||||
|     return cv2.cvtColor(np.clip(source, 0, 255).astype("uint8"), cv2.COLOR_LAB2BGR) | ||||
|  |  | |||
|  | @ -269,6 +269,28 @@ def create_root(start: Callable[[], None], destroy: Callable[[], None]) -> ctk.C | |||
|     ) | ||||
|     show_fps_switch.place(relx=0.6, rely=0.75) | ||||
| 
 | ||||
|     mouth_mask_var = ctk.BooleanVar(value=modules.globals.mouth_mask) | ||||
|     mouth_mask_switch = ctk.CTkSwitch( | ||||
|         root, | ||||
|         text="Mouth Mask", | ||||
|         variable=mouth_mask_var, | ||||
|         cursor="hand2", | ||||
|         command=lambda: setattr(modules.globals, "mouth_mask", mouth_mask_var.get()), | ||||
|     ) | ||||
|     mouth_mask_switch.place(relx=0.1, rely=0.55) | ||||
| 
 | ||||
|     show_mouth_mask_box_var = ctk.BooleanVar(value=modules.globals.show_mouth_mask_box) | ||||
|     show_mouth_mask_box_switch = ctk.CTkSwitch( | ||||
|         root, | ||||
|         text="Show Mouth Mask Box", | ||||
|         variable=show_mouth_mask_box_var, | ||||
|         cursor="hand2", | ||||
|         command=lambda: setattr( | ||||
|             modules.globals, "show_mouth_mask_box", show_mouth_mask_box_var.get() | ||||
|         ), | ||||
|     ) | ||||
|     show_mouth_mask_box_switch.place(relx=0.6, rely=0.55) | ||||
| 
 | ||||
|     start_button = ctk.CTkButton( | ||||
|         root, text="Start", cursor="hand2", command=lambda: analyze_target(start, root) | ||||
|     ) | ||||
|  |  | |||
		Loading…
	
		Reference in New Issue