Add Mouth Mask Feature
							parent
							
								
									6f6f93a4ad
								
							
						
					
					
						commit
						29c9c119d3
					
				|  | @ -36,3 +36,8 @@ fp_ui: Dict[str, bool] = {"face_enhancer": False} | ||||||
| camera_input_combobox = None | camera_input_combobox = None | ||||||
| webcam_preview_running = False | webcam_preview_running = False | ||||||
| show_fps = False | show_fps = False | ||||||
|  | mouth_mask = False | ||||||
|  | show_mouth_mask_box = False | ||||||
|  | mask_feather_ratio = 8 | ||||||
|  | mask_down_size = 0.50 | ||||||
|  | mask_size = 1 | ||||||
|  |  | ||||||
|  | @ -2,35 +2,49 @@ from typing import Any, List | ||||||
| import cv2 | import cv2 | ||||||
| import insightface | import insightface | ||||||
| import threading | import threading | ||||||
| 
 | import numpy as np | ||||||
| import modules.globals | import modules.globals | ||||||
| import modules.processors.frame.core | import modules.processors.frame.core | ||||||
| from modules.core import update_status | from modules.core import update_status | ||||||
| from modules.face_analyser import get_one_face, get_many_faces, default_source_face | from modules.face_analyser import get_one_face, get_many_faces, default_source_face | ||||||
| from modules.typing import Face, Frame | from modules.typing import Face, Frame | ||||||
| from modules.utilities import conditional_download, resolve_relative_path, is_image, is_video | from modules.utilities import ( | ||||||
|  |     conditional_download, | ||||||
|  |     resolve_relative_path, | ||||||
|  |     is_image, | ||||||
|  |     is_video, | ||||||
|  | ) | ||||||
| from modules.cluster_analysis import find_closest_centroid | from modules.cluster_analysis import find_closest_centroid | ||||||
| 
 | 
 | ||||||
| FACE_SWAPPER = None | FACE_SWAPPER = None | ||||||
| THREAD_LOCK = threading.Lock() | THREAD_LOCK = threading.Lock() | ||||||
| NAME = 'DLC.FACE-SWAPPER' | NAME = "DLC.FACE-SWAPPER" | ||||||
| 
 | 
 | ||||||
| 
 | 
 | ||||||
| def pre_check() -> bool: | def pre_check() -> bool: | ||||||
|     download_directory_path = resolve_relative_path('../models') |     download_directory_path = resolve_relative_path("../models") | ||||||
|     conditional_download(download_directory_path, ['https://huggingface.co/hacksider/deep-live-cam/blob/main/inswapper_128_fp16.onnx']) |     conditional_download( | ||||||
|  |         download_directory_path, | ||||||
|  |         [ | ||||||
|  |             "https://huggingface.co/hacksider/deep-live-cam/blob/main/inswapper_128_fp16.onnx" | ||||||
|  |         ], | ||||||
|  |     ) | ||||||
|     return True |     return True | ||||||
| 
 | 
 | ||||||
| 
 | 
 | ||||||
| def pre_start() -> bool: | def pre_start() -> bool: | ||||||
|     if not modules.globals.map_faces and not is_image(modules.globals.source_path): |     if not modules.globals.map_faces and not is_image(modules.globals.source_path): | ||||||
|         update_status('Select an image for source path.', NAME) |         update_status("Select an image for source path.", NAME) | ||||||
|         return False |         return False | ||||||
|     elif not modules.globals.map_faces and not get_one_face(cv2.imread(modules.globals.source_path)): |     elif not modules.globals.map_faces and not get_one_face( | ||||||
|         update_status('No face in source path detected.', NAME) |         cv2.imread(modules.globals.source_path) | ||||||
|  |     ): | ||||||
|  |         update_status("No face in source path detected.", NAME) | ||||||
|         return False |         return False | ||||||
|     if not is_image(modules.globals.target_path) and not is_video(modules.globals.target_path): |     if not is_image(modules.globals.target_path) and not is_video( | ||||||
|         update_status('Select an image or video for target path.', NAME) |         modules.globals.target_path | ||||||
|  |     ): | ||||||
|  |         update_status("Select an image or video for target path.", NAME) | ||||||
|         return False |         return False | ||||||
|     return True |     return True | ||||||
| 
 | 
 | ||||||
|  | @ -40,17 +54,45 @@ def get_face_swapper() -> Any: | ||||||
| 
 | 
 | ||||||
|     with THREAD_LOCK: |     with THREAD_LOCK: | ||||||
|         if FACE_SWAPPER is None: |         if FACE_SWAPPER is None: | ||||||
|             model_path = resolve_relative_path('../models/inswapper_128_fp16.onnx') |             model_path = resolve_relative_path("../models/inswapper_128_fp16.onnx") | ||||||
|             FACE_SWAPPER = insightface.model_zoo.get_model(model_path, providers=modules.globals.execution_providers) |             FACE_SWAPPER = insightface.model_zoo.get_model( | ||||||
|  |                 model_path, providers=modules.globals.execution_providers | ||||||
|  |             ) | ||||||
|     return FACE_SWAPPER |     return FACE_SWAPPER | ||||||
| 
 | 
 | ||||||
| 
 | 
 | ||||||
| def swap_face(source_face: Face, target_face: Face, temp_frame: Frame) -> Frame: | def swap_face(source_face: Face, target_face: Face, temp_frame: Frame) -> Frame: | ||||||
|     return get_face_swapper().get(temp_frame, target_face, source_face, paste_back=True) |     face_swapper = get_face_swapper() | ||||||
|  | 
 | ||||||
|  |     # Apply the face swap | ||||||
|  |     swapped_frame = face_swapper.get( | ||||||
|  |         temp_frame, target_face, source_face, paste_back=True | ||||||
|  |     ) | ||||||
|  | 
 | ||||||
|  |     if modules.globals.mouth_mask: | ||||||
|  |         # Create a mask for the target face | ||||||
|  |         face_mask = create_face_mask(target_face, temp_frame) | ||||||
|  | 
 | ||||||
|  |         # Create the mouth mask | ||||||
|  |         mouth_mask, mouth_cutout, mouth_box, lower_lip_polygon = ( | ||||||
|  |             create_lower_mouth_mask(target_face, temp_frame) | ||||||
|  |         ) | ||||||
|  | 
 | ||||||
|  |         # Apply the mouth area | ||||||
|  |         swapped_frame = apply_mouth_area( | ||||||
|  |             swapped_frame, mouth_cutout, mouth_box, face_mask, lower_lip_polygon | ||||||
|  |         ) | ||||||
|  | 
 | ||||||
|  |         if modules.globals.show_mouth_mask_box: | ||||||
|  |             mouth_mask_data = (mouth_mask, mouth_cutout, mouth_box, lower_lip_polygon) | ||||||
|  |             swapped_frame = draw_mouth_mask_visualization( | ||||||
|  |                 swapped_frame, target_face, mouth_mask_data | ||||||
|  |             ) | ||||||
|  | 
 | ||||||
|  |     return swapped_frame | ||||||
| 
 | 
 | ||||||
| 
 | 
 | ||||||
| def process_frame(source_face: Face, temp_frame: Frame) -> Frame: | def process_frame(source_face: Face, temp_frame: Frame) -> Frame: | ||||||
|     # Ensure the frame is in RGB format if color correction is enabled |  | ||||||
|     if modules.globals.color_correction: |     if modules.globals.color_correction: | ||||||
|         temp_frame = cv2.cvtColor(temp_frame, cv2.COLOR_BGR2RGB) |         temp_frame = cv2.cvtColor(temp_frame, cv2.COLOR_BGR2RGB) | ||||||
| 
 | 
 | ||||||
|  | @ -71,35 +113,44 @@ def process_frame_v2(temp_frame: Frame, temp_frame_path: str = "") -> Frame: | ||||||
|         if modules.globals.many_faces: |         if modules.globals.many_faces: | ||||||
|             source_face = default_source_face() |             source_face = default_source_face() | ||||||
|             for map in modules.globals.souce_target_map: |             for map in modules.globals.souce_target_map: | ||||||
|                 target_face = map['target']['face'] |                 target_face = map["target"]["face"] | ||||||
|                 temp_frame = swap_face(source_face, target_face, temp_frame) |                 temp_frame = swap_face(source_face, target_face, temp_frame) | ||||||
| 
 | 
 | ||||||
|         elif not modules.globals.many_faces: |         elif not modules.globals.many_faces: | ||||||
|             for map in modules.globals.souce_target_map: |             for map in modules.globals.souce_target_map: | ||||||
|                 if "source" in map: |                 if "source" in map: | ||||||
|                     source_face = map['source']['face'] |                     source_face = map["source"]["face"] | ||||||
|                     target_face = map['target']['face']                |                     target_face = map["target"]["face"] | ||||||
|                     temp_frame = swap_face(source_face, target_face, temp_frame) |                     temp_frame = swap_face(source_face, target_face, temp_frame) | ||||||
| 
 | 
 | ||||||
|     elif is_video(modules.globals.target_path): |     elif is_video(modules.globals.target_path): | ||||||
|         if modules.globals.many_faces: |         if modules.globals.many_faces: | ||||||
|             source_face = default_source_face() |             source_face = default_source_face() | ||||||
|             for map in modules.globals.souce_target_map: |             for map in modules.globals.souce_target_map: | ||||||
|                 target_frame = [f for f in map['target_faces_in_frame'] if f['location'] == temp_frame_path] |                 target_frame = [ | ||||||
|  |                     f | ||||||
|  |                     for f in map["target_faces_in_frame"] | ||||||
|  |                     if f["location"] == temp_frame_path | ||||||
|  |                 ] | ||||||
| 
 | 
 | ||||||
|                 for frame in target_frame: |                 for frame in target_frame: | ||||||
|                     for target_face in frame['faces']: |                     for target_face in frame["faces"]: | ||||||
|                         temp_frame = swap_face(source_face, target_face, temp_frame) |                         temp_frame = swap_face(source_face, target_face, temp_frame) | ||||||
| 
 | 
 | ||||||
|         elif not modules.globals.many_faces: |         elif not modules.globals.many_faces: | ||||||
|             for map in modules.globals.souce_target_map: |             for map in modules.globals.souce_target_map: | ||||||
|                 if "source" in map: |                 if "source" in map: | ||||||
|                     target_frame = [f for f in map['target_faces_in_frame'] if f['location'] == temp_frame_path] |                     target_frame = [ | ||||||
|                     source_face = map['source']['face'] |                         f | ||||||
|  |                         for f in map["target_faces_in_frame"] | ||||||
|  |                         if f["location"] == temp_frame_path | ||||||
|  |                     ] | ||||||
|  |                     source_face = map["source"]["face"] | ||||||
| 
 | 
 | ||||||
|                     for frame in target_frame: |                     for frame in target_frame: | ||||||
|                         for target_face in frame['faces']: |                         for target_face in frame["faces"]: | ||||||
|                             temp_frame = swap_face(source_face, target_face, temp_frame) |                             temp_frame = swap_face(source_face, target_face, temp_frame) | ||||||
|  | 
 | ||||||
|     else: |     else: | ||||||
|         detected_faces = get_many_faces(temp_frame) |         detected_faces = get_many_faces(temp_frame) | ||||||
|         if modules.globals.many_faces: |         if modules.globals.many_faces: | ||||||
|  | @ -110,25 +161,46 @@ def process_frame_v2(temp_frame: Frame, temp_frame_path: str = "") -> Frame: | ||||||
| 
 | 
 | ||||||
|         elif not modules.globals.many_faces: |         elif not modules.globals.many_faces: | ||||||
|             if detected_faces: |             if detected_faces: | ||||||
|                 if len(detected_faces) <= len(modules.globals.simple_map['target_embeddings']): |                 if len(detected_faces) <= len( | ||||||
|  |                     modules.globals.simple_map["target_embeddings"] | ||||||
|  |                 ): | ||||||
|                     for detected_face in detected_faces: |                     for detected_face in detected_faces: | ||||||
|                         closest_centroid_index, _ = find_closest_centroid(modules.globals.simple_map['target_embeddings'], detected_face.normed_embedding) |                         closest_centroid_index, _ = find_closest_centroid( | ||||||
|  |                             modules.globals.simple_map["target_embeddings"], | ||||||
|  |                             detected_face.normed_embedding, | ||||||
|  |                         ) | ||||||
| 
 | 
 | ||||||
|                         temp_frame = swap_face(modules.globals.simple_map['source_faces'][closest_centroid_index], detected_face, temp_frame) |                         temp_frame = swap_face( | ||||||
|  |                             modules.globals.simple_map["source_faces"][ | ||||||
|  |                                 closest_centroid_index | ||||||
|  |                             ], | ||||||
|  |                             detected_face, | ||||||
|  |                             temp_frame, | ||||||
|  |                         ) | ||||||
|                 else: |                 else: | ||||||
|                     detected_faces_centroids = [] |                     detected_faces_centroids = [] | ||||||
|                     for face in detected_faces: |                     for face in detected_faces: | ||||||
|                         detected_faces_centroids.append(face.normed_embedding) |                         detected_faces_centroids.append(face.normed_embedding) | ||||||
|                     i = 0 |                     i = 0 | ||||||
|                     for target_embedding in modules.globals.simple_map['target_embeddings']: |                     for target_embedding in modules.globals.simple_map[ | ||||||
|                         closest_centroid_index, _ = find_closest_centroid(detected_faces_centroids, target_embedding) |                         "target_embeddings" | ||||||
|  |                     ]: | ||||||
|  |                         closest_centroid_index, _ = find_closest_centroid( | ||||||
|  |                             detected_faces_centroids, target_embedding | ||||||
|  |                         ) | ||||||
| 
 | 
 | ||||||
|                         temp_frame = swap_face(modules.globals.simple_map['source_faces'][i], detected_faces[closest_centroid_index], temp_frame) |                         temp_frame = swap_face( | ||||||
|  |                             modules.globals.simple_map["source_faces"][i], | ||||||
|  |                             detected_faces[closest_centroid_index], | ||||||
|  |                             temp_frame, | ||||||
|  |                         ) | ||||||
|                         i += 1 |                         i += 1 | ||||||
|     return temp_frame |     return temp_frame | ||||||
| 
 | 
 | ||||||
| 
 | 
 | ||||||
| def process_frames(source_path: str, temp_frame_paths: List[str], progress: Any = None) -> None: | def process_frames( | ||||||
|  |     source_path: str, temp_frame_paths: List[str], progress: Any = None | ||||||
|  | ) -> None: | ||||||
|     if not modules.globals.map_faces: |     if not modules.globals.map_faces: | ||||||
|         source_face = get_one_face(cv2.imread(source_path)) |         source_face = get_one_face(cv2.imread(source_path)) | ||||||
|         for temp_frame_path in temp_frame_paths: |         for temp_frame_path in temp_frame_paths: | ||||||
|  | @ -162,7 +234,9 @@ def process_image(source_path: str, target_path: str, output_path: str) -> None: | ||||||
|         cv2.imwrite(output_path, result) |         cv2.imwrite(output_path, result) | ||||||
|     else: |     else: | ||||||
|         if modules.globals.many_faces: |         if modules.globals.many_faces: | ||||||
|             update_status('Many faces enabled. Using first source image. Progressing...', NAME) |             update_status( | ||||||
|  |                 "Many faces enabled. Using first source image. Progressing...", NAME | ||||||
|  |             ) | ||||||
|         target_frame = cv2.imread(output_path) |         target_frame = cv2.imread(output_path) | ||||||
|         result = process_frame_v2(target_frame) |         result = process_frame_v2(target_frame) | ||||||
|         cv2.imwrite(output_path, result) |         cv2.imwrite(output_path, result) | ||||||
|  | @ -170,5 +244,367 @@ def process_image(source_path: str, target_path: str, output_path: str) -> None: | ||||||
| 
 | 
 | ||||||
| def process_video(source_path: str, temp_frame_paths: List[str]) -> None: | def process_video(source_path: str, temp_frame_paths: List[str]) -> None: | ||||||
|     if modules.globals.map_faces and modules.globals.many_faces: |     if modules.globals.map_faces and modules.globals.many_faces: | ||||||
|         update_status('Many faces enabled. Using first source image. Progressing...', NAME) |         update_status( | ||||||
|     modules.processors.frame.core.process_video(source_path, temp_frame_paths, process_frames) |             "Many faces enabled. Using first source image. Progressing...", NAME | ||||||
|  |         ) | ||||||
|  |     modules.processors.frame.core.process_video( | ||||||
|  |         source_path, temp_frame_paths, process_frames | ||||||
|  |     ) | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | def create_lower_mouth_mask( | ||||||
|  |     face: Face, frame: Frame | ||||||
|  | ) -> (np.ndarray, np.ndarray, tuple, np.ndarray): | ||||||
|  |     mask = np.zeros(frame.shape[:2], dtype=np.uint8) | ||||||
|  |     mouth_cutout = None | ||||||
|  |     landmarks = face.landmark_2d_106 | ||||||
|  |     if landmarks is not None: | ||||||
|  |         #                  0  1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18 19 20 | ||||||
|  |         lower_lip_order = [ | ||||||
|  |             65, | ||||||
|  |             66, | ||||||
|  |             62, | ||||||
|  |             70, | ||||||
|  |             69, | ||||||
|  |             18, | ||||||
|  |             19, | ||||||
|  |             20, | ||||||
|  |             21, | ||||||
|  |             22, | ||||||
|  |             23, | ||||||
|  |             24, | ||||||
|  |             0, | ||||||
|  |             8, | ||||||
|  |             7, | ||||||
|  |             6, | ||||||
|  |             5, | ||||||
|  |             4, | ||||||
|  |             3, | ||||||
|  |             2, | ||||||
|  |             65, | ||||||
|  |         ] | ||||||
|  |         lower_lip_landmarks = landmarks[lower_lip_order].astype( | ||||||
|  |             np.float32 | ||||||
|  |         )  # Use float for precise calculations | ||||||
|  | 
 | ||||||
|  |         # Calculate the center of the landmarks | ||||||
|  |         center = np.mean(lower_lip_landmarks, axis=0) | ||||||
|  | 
 | ||||||
|  |         # Expand the landmarks outward | ||||||
|  |         expansion_factor = ( | ||||||
|  |             1 + modules.globals.mask_down_size | ||||||
|  |         )  # Adjust this for more or less expansion | ||||||
|  |         expanded_landmarks = (lower_lip_landmarks - center) * expansion_factor + center | ||||||
|  | 
 | ||||||
|  |         # Extend the top lip part | ||||||
|  |         toplip_indices = [ | ||||||
|  |             20, | ||||||
|  |             0, | ||||||
|  |             1, | ||||||
|  |             2, | ||||||
|  |             3, | ||||||
|  |             4, | ||||||
|  |             5, | ||||||
|  |         ]  # Indices for landmarks 2, 65, 66, 62, 70, 69, 18 | ||||||
|  |         toplip_extension = ( | ||||||
|  |             modules.globals.mask_size * 0.5 | ||||||
|  |         )  # Adjust this factor to control the extension | ||||||
|  |         for idx in toplip_indices: | ||||||
|  |             direction = expanded_landmarks[idx] - center | ||||||
|  |             direction = direction / np.linalg.norm(direction) | ||||||
|  |             expanded_landmarks[idx] += direction * toplip_extension | ||||||
|  | 
 | ||||||
|  |         # Extend the bottom part (chin area) | ||||||
|  |         chin_indices = [ | ||||||
|  |             11, | ||||||
|  |             12, | ||||||
|  |             13, | ||||||
|  |             14, | ||||||
|  |             15, | ||||||
|  |             16, | ||||||
|  |         ]  # Indices for landmarks 21, 22, 23, 24, 0, 8 | ||||||
|  |         chin_extension = 2 * 0.2  # Adjust this factor to control the extension | ||||||
|  |         for idx in chin_indices: | ||||||
|  |             expanded_landmarks[idx][1] += ( | ||||||
|  |                 expanded_landmarks[idx][1] - center[1] | ||||||
|  |             ) * chin_extension | ||||||
|  | 
 | ||||||
|  |         # Convert back to integer coordinates | ||||||
|  |         expanded_landmarks = expanded_landmarks.astype(np.int32) | ||||||
|  | 
 | ||||||
|  |         # Calculate bounding box for the expanded lower mouth | ||||||
|  |         min_x, min_y = np.min(expanded_landmarks, axis=0) | ||||||
|  |         max_x, max_y = np.max(expanded_landmarks, axis=0) | ||||||
|  | 
 | ||||||
|  |         # Add some padding to the bounding box | ||||||
|  |         padding = int((max_x - min_x) * 0.1)  # 10% padding | ||||||
|  |         min_x = max(0, min_x - padding) | ||||||
|  |         min_y = max(0, min_y - padding) | ||||||
|  |         max_x = min(frame.shape[1], max_x + padding) | ||||||
|  |         max_y = min(frame.shape[0], max_y + padding) | ||||||
|  | 
 | ||||||
|  |         # Ensure the bounding box dimensions are valid | ||||||
|  |         if max_x <= min_x or max_y <= min_y: | ||||||
|  |             if (max_x - min_x) <= 1: | ||||||
|  |                 max_x = min_x + 1 | ||||||
|  |             if (max_y - min_y) <= 1: | ||||||
|  |                 max_y = min_y + 1 | ||||||
|  | 
 | ||||||
|  |         # Create the mask | ||||||
|  |         mask_roi = np.zeros((max_y - min_y, max_x - min_x), dtype=np.uint8) | ||||||
|  |         cv2.fillPoly(mask_roi, [expanded_landmarks - [min_x, min_y]], 255) | ||||||
|  | 
 | ||||||
|  |         # Apply Gaussian blur to soften the mask edges | ||||||
|  |         mask_roi = cv2.GaussianBlur(mask_roi, (15, 15), 5) | ||||||
|  | 
 | ||||||
|  |         # Place the mask ROI in the full-sized mask | ||||||
|  |         mask[min_y:max_y, min_x:max_x] = mask_roi | ||||||
|  | 
 | ||||||
|  |         # Extract the masked area from the frame | ||||||
|  |         mouth_cutout = frame[min_y:max_y, min_x:max_x].copy() | ||||||
|  | 
 | ||||||
|  |         # Return the expanded lower lip polygon in original frame coordinates | ||||||
|  |         lower_lip_polygon = expanded_landmarks | ||||||
|  | 
 | ||||||
|  |     return mask, mouth_cutout, (min_x, min_y, max_x, max_y), lower_lip_polygon | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | def draw_mouth_mask_visualization( | ||||||
|  |     frame: Frame, face: Face, mouth_mask_data: tuple | ||||||
|  | ) -> Frame: | ||||||
|  |     landmarks = face.landmark_2d_106 | ||||||
|  |     if landmarks is not None and mouth_mask_data is not None: | ||||||
|  |         mask, mouth_cutout, (min_x, min_y, max_x, max_y), lower_lip_polygon = ( | ||||||
|  |             mouth_mask_data | ||||||
|  |         ) | ||||||
|  | 
 | ||||||
|  |         vis_frame = frame.copy() | ||||||
|  | 
 | ||||||
|  |         # Ensure coordinates are within frame bounds | ||||||
|  |         height, width = vis_frame.shape[:2] | ||||||
|  |         min_x, min_y = max(0, min_x), max(0, min_y) | ||||||
|  |         max_x, max_y = min(width, max_x), min(height, max_y) | ||||||
|  | 
 | ||||||
|  |         # Adjust mask to match the region size | ||||||
|  |         mask_region = mask[0 : max_y - min_y, 0 : max_x - min_x] | ||||||
|  | 
 | ||||||
|  |         # Remove the color mask overlay | ||||||
|  |         # color_mask = cv2.applyColorMap((mask_region * 255).astype(np.uint8), cv2.COLORMAP_JET) | ||||||
|  | 
 | ||||||
|  |         # Ensure shapes match before blending | ||||||
|  |         vis_region = vis_frame[min_y:max_y, min_x:max_x] | ||||||
|  |         # Remove blending with color_mask | ||||||
|  |         # if vis_region.shape[:2] == color_mask.shape[:2]: | ||||||
|  |         #     blended = cv2.addWeighted(vis_region, 0.7, color_mask, 0.3, 0) | ||||||
|  |         #     vis_frame[min_y:max_y, min_x:max_x] = blended | ||||||
|  | 
 | ||||||
|  |         # Draw the lower lip polygon | ||||||
|  |         cv2.polylines(vis_frame, [lower_lip_polygon], True, (0, 255, 0), 2) | ||||||
|  | 
 | ||||||
|  |         # Remove the red box | ||||||
|  |         # cv2.rectangle(vis_frame, (min_x, min_y), (max_x, max_y), (0, 0, 255), 2) | ||||||
|  | 
 | ||||||
|  |         # Visualize the feathered mask | ||||||
|  |         feather_amount = max( | ||||||
|  |             1, | ||||||
|  |             min( | ||||||
|  |                 30, | ||||||
|  |                 (max_x - min_x) // modules.globals.mask_feather_ratio, | ||||||
|  |                 (max_y - min_y) // modules.globals.mask_feather_ratio, | ||||||
|  |             ), | ||||||
|  |         ) | ||||||
|  |         # Ensure kernel size is odd | ||||||
|  |         kernel_size = 2 * feather_amount + 1 | ||||||
|  |         feathered_mask = cv2.GaussianBlur( | ||||||
|  |             mask_region.astype(float), (kernel_size, kernel_size), 0 | ||||||
|  |         ) | ||||||
|  |         feathered_mask = (feathered_mask / feathered_mask.max() * 255).astype(np.uint8) | ||||||
|  |         # Remove the feathered mask color overlay | ||||||
|  |         # color_feathered_mask = cv2.applyColorMap(feathered_mask, cv2.COLORMAP_VIRIDIS) | ||||||
|  | 
 | ||||||
|  |         # Ensure shapes match before blending feathered mask | ||||||
|  |         # if vis_region.shape == color_feathered_mask.shape: | ||||||
|  |         #     blended_feathered = cv2.addWeighted(vis_region, 0.7, color_feathered_mask, 0.3, 0) | ||||||
|  |         #     vis_frame[min_y:max_y, min_x:max_x] = blended_feathered | ||||||
|  | 
 | ||||||
|  |         # Add labels | ||||||
|  |         cv2.putText( | ||||||
|  |             vis_frame, | ||||||
|  |             "Lower Mouth Mask", | ||||||
|  |             (min_x, min_y - 10), | ||||||
|  |             cv2.FONT_HERSHEY_SIMPLEX, | ||||||
|  |             0.5, | ||||||
|  |             (255, 255, 255), | ||||||
|  |             1, | ||||||
|  |         ) | ||||||
|  |         cv2.putText( | ||||||
|  |             vis_frame, | ||||||
|  |             "Feathered Mask", | ||||||
|  |             (min_x, max_y + 20), | ||||||
|  |             cv2.FONT_HERSHEY_SIMPLEX, | ||||||
|  |             0.5, | ||||||
|  |             (255, 255, 255), | ||||||
|  |             1, | ||||||
|  |         ) | ||||||
|  | 
 | ||||||
|  |         return vis_frame | ||||||
|  |     return frame | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | def apply_mouth_area( | ||||||
|  |     frame: np.ndarray, | ||||||
|  |     mouth_cutout: np.ndarray, | ||||||
|  |     mouth_box: tuple, | ||||||
|  |     face_mask: np.ndarray, | ||||||
|  |     mouth_polygon: np.ndarray, | ||||||
|  | ) -> np.ndarray: | ||||||
|  |     min_x, min_y, max_x, max_y = mouth_box | ||||||
|  |     box_width = max_x - min_x | ||||||
|  |     box_height = max_y - min_y | ||||||
|  | 
 | ||||||
|  |     if ( | ||||||
|  |         mouth_cutout is None | ||||||
|  |         or box_width is None | ||||||
|  |         or box_height is None | ||||||
|  |         or face_mask is None | ||||||
|  |         or mouth_polygon is None | ||||||
|  |     ): | ||||||
|  |         return frame | ||||||
|  | 
 | ||||||
|  |     try: | ||||||
|  |         resized_mouth_cutout = cv2.resize(mouth_cutout, (box_width, box_height)) | ||||||
|  |         roi = frame[min_y:max_y, min_x:max_x] | ||||||
|  | 
 | ||||||
|  |         if roi.shape != resized_mouth_cutout.shape: | ||||||
|  |             resized_mouth_cutout = cv2.resize( | ||||||
|  |                 resized_mouth_cutout, (roi.shape[1], roi.shape[0]) | ||||||
|  |             ) | ||||||
|  | 
 | ||||||
|  |         color_corrected_mouth = apply_color_transfer(resized_mouth_cutout, roi) | ||||||
|  | 
 | ||||||
|  |         # Use the provided mouth polygon to create the mask | ||||||
|  |         polygon_mask = np.zeros(roi.shape[:2], dtype=np.uint8) | ||||||
|  |         adjusted_polygon = mouth_polygon - [min_x, min_y] | ||||||
|  |         cv2.fillPoly(polygon_mask, [adjusted_polygon], 255) | ||||||
|  | 
 | ||||||
|  |         # Apply feathering to the polygon mask | ||||||
|  |         feather_amount = min( | ||||||
|  |             30, | ||||||
|  |             box_width // modules.globals.mask_feather_ratio, | ||||||
|  |             box_height // modules.globals.mask_feather_ratio, | ||||||
|  |         ) | ||||||
|  |         feathered_mask = cv2.GaussianBlur( | ||||||
|  |             polygon_mask.astype(float), (0, 0), feather_amount | ||||||
|  |         ) | ||||||
|  |         feathered_mask = feathered_mask / feathered_mask.max() | ||||||
|  | 
 | ||||||
|  |         face_mask_roi = face_mask[min_y:max_y, min_x:max_x] | ||||||
|  |         combined_mask = feathered_mask * (face_mask_roi / 255.0) | ||||||
|  | 
 | ||||||
|  |         combined_mask = combined_mask[:, :, np.newaxis] | ||||||
|  |         blended = ( | ||||||
|  |             color_corrected_mouth * combined_mask + roi * (1 - combined_mask) | ||||||
|  |         ).astype(np.uint8) | ||||||
|  | 
 | ||||||
|  |         # Apply face mask to blended result | ||||||
|  |         face_mask_3channel = ( | ||||||
|  |             np.repeat(face_mask_roi[:, :, np.newaxis], 3, axis=2) / 255.0 | ||||||
|  |         ) | ||||||
|  |         final_blend = blended * face_mask_3channel + roi * (1 - face_mask_3channel) | ||||||
|  | 
 | ||||||
|  |         frame[min_y:max_y, min_x:max_x] = final_blend.astype(np.uint8) | ||||||
|  |     except Exception as e: | ||||||
|  |         pass | ||||||
|  | 
 | ||||||
|  |     return frame | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | def create_face_mask(face: Face, frame: Frame) -> np.ndarray: | ||||||
|  |     mask = np.zeros(frame.shape[:2], dtype=np.uint8) | ||||||
|  |     landmarks = face.landmark_2d_106 | ||||||
|  |     if landmarks is not None: | ||||||
|  |         # Convert landmarks to int32 | ||||||
|  |         landmarks = landmarks.astype(np.int32) | ||||||
|  | 
 | ||||||
|  |         # Extract facial features | ||||||
|  |         right_side_face = landmarks[0:16] | ||||||
|  |         left_side_face = landmarks[17:32] | ||||||
|  |         right_eye = landmarks[33:42] | ||||||
|  |         right_eye_brow = landmarks[43:51] | ||||||
|  |         left_eye = landmarks[87:96] | ||||||
|  |         left_eye_brow = landmarks[97:105] | ||||||
|  | 
 | ||||||
|  |         # Calculate forehead extension | ||||||
|  |         right_eyebrow_top = np.min(right_eye_brow[:, 1]) | ||||||
|  |         left_eyebrow_top = np.min(left_eye_brow[:, 1]) | ||||||
|  |         eyebrow_top = min(right_eyebrow_top, left_eyebrow_top) | ||||||
|  | 
 | ||||||
|  |         face_top = np.min([right_side_face[0, 1], left_side_face[-1, 1]]) | ||||||
|  |         forehead_height = face_top - eyebrow_top | ||||||
|  |         extended_forehead_height = int(forehead_height * 5.0)  # Extend by 50% | ||||||
|  | 
 | ||||||
|  |         # Create forehead points | ||||||
|  |         forehead_left = right_side_face[0].copy() | ||||||
|  |         forehead_right = left_side_face[-1].copy() | ||||||
|  |         forehead_left[1] -= extended_forehead_height | ||||||
|  |         forehead_right[1] -= extended_forehead_height | ||||||
|  | 
 | ||||||
|  |         # Combine all points to create the face outline | ||||||
|  |         face_outline = np.vstack( | ||||||
|  |             [ | ||||||
|  |                 [forehead_left], | ||||||
|  |                 right_side_face, | ||||||
|  |                 left_side_face[ | ||||||
|  |                     ::-1 | ||||||
|  |                 ],  # Reverse left side to create a continuous outline | ||||||
|  |                 [forehead_right], | ||||||
|  |             ] | ||||||
|  |         ) | ||||||
|  | 
 | ||||||
|  |         # Calculate padding | ||||||
|  |         padding = int( | ||||||
|  |             np.linalg.norm(right_side_face[0] - left_side_face[-1]) * 0.05 | ||||||
|  |         )  # 5% of face width | ||||||
|  | 
 | ||||||
|  |         # Create a slightly larger convex hull for padding | ||||||
|  |         hull = cv2.convexHull(face_outline) | ||||||
|  |         hull_padded = [] | ||||||
|  |         for point in hull: | ||||||
|  |             x, y = point[0] | ||||||
|  |             center = np.mean(face_outline, axis=0) | ||||||
|  |             direction = np.array([x, y]) - center | ||||||
|  |             direction = direction / np.linalg.norm(direction) | ||||||
|  |             padded_point = np.array([x, y]) + direction * padding | ||||||
|  |             hull_padded.append(padded_point) | ||||||
|  | 
 | ||||||
|  |         hull_padded = np.array(hull_padded, dtype=np.int32) | ||||||
|  | 
 | ||||||
|  |         # Fill the padded convex hull | ||||||
|  |         cv2.fillConvexPoly(mask, hull_padded, 255) | ||||||
|  | 
 | ||||||
|  |         # Smooth the mask edges | ||||||
|  |         mask = cv2.GaussianBlur(mask, (5, 5), 3) | ||||||
|  | 
 | ||||||
|  |     return mask | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | def apply_color_transfer(source, target): | ||||||
|  |     """ | ||||||
|  |     Apply color transfer from target to source image | ||||||
|  |     """ | ||||||
|  |     source = cv2.cvtColor(source, cv2.COLOR_BGR2LAB).astype("float32") | ||||||
|  |     target = cv2.cvtColor(target, cv2.COLOR_BGR2LAB).astype("float32") | ||||||
|  | 
 | ||||||
|  |     source_mean, source_std = cv2.meanStdDev(source) | ||||||
|  |     target_mean, target_std = cv2.meanStdDev(target) | ||||||
|  | 
 | ||||||
|  |     # Reshape mean and std to be broadcastable | ||||||
|  |     source_mean = source_mean.reshape(1, 1, 3) | ||||||
|  |     source_std = source_std.reshape(1, 1, 3) | ||||||
|  |     target_mean = target_mean.reshape(1, 1, 3) | ||||||
|  |     target_std = target_std.reshape(1, 1, 3) | ||||||
|  | 
 | ||||||
|  |     # Perform the color transfer | ||||||
|  |     source = (source - source_mean) * (target_std / source_std) + target_mean | ||||||
|  | 
 | ||||||
|  |     return cv2.cvtColor(np.clip(source, 0, 255).astype("uint8"), cv2.COLOR_LAB2BGR) | ||||||
|  |  | ||||||
|  | @ -269,6 +269,28 @@ def create_root(start: Callable[[], None], destroy: Callable[[], None]) -> ctk.C | ||||||
|     ) |     ) | ||||||
|     show_fps_switch.place(relx=0.6, rely=0.75) |     show_fps_switch.place(relx=0.6, rely=0.75) | ||||||
| 
 | 
 | ||||||
|  |     mouth_mask_var = ctk.BooleanVar(value=modules.globals.mouth_mask) | ||||||
|  |     mouth_mask_switch = ctk.CTkSwitch( | ||||||
|  |         root, | ||||||
|  |         text="Mouth Mask", | ||||||
|  |         variable=mouth_mask_var, | ||||||
|  |         cursor="hand2", | ||||||
|  |         command=lambda: setattr(modules.globals, "mouth_mask", mouth_mask_var.get()), | ||||||
|  |     ) | ||||||
|  |     mouth_mask_switch.place(relx=0.1, rely=0.55) | ||||||
|  | 
 | ||||||
|  |     show_mouth_mask_box_var = ctk.BooleanVar(value=modules.globals.show_mouth_mask_box) | ||||||
|  |     show_mouth_mask_box_switch = ctk.CTkSwitch( | ||||||
|  |         root, | ||||||
|  |         text="Show Mouth Mask Box", | ||||||
|  |         variable=show_mouth_mask_box_var, | ||||||
|  |         cursor="hand2", | ||||||
|  |         command=lambda: setattr( | ||||||
|  |             modules.globals, "show_mouth_mask_box", show_mouth_mask_box_var.get() | ||||||
|  |         ), | ||||||
|  |     ) | ||||||
|  |     show_mouth_mask_box_switch.place(relx=0.6, rely=0.55) | ||||||
|  | 
 | ||||||
|     start_button = ctk.CTkButton( |     start_button = ctk.CTkButton( | ||||||
|         root, text="Start", cursor="hand2", command=lambda: analyze_target(start, root) |         root, text="Start", cursor="hand2", command=lambda: analyze_target(start, root) | ||||||
|     ) |     ) | ||||||
|  |  | ||||||
		Loading…
	
		Reference in New Issue