Deep-Live-Cam/modules/core.py

327 lines
13 KiB
Python
Raw Normal View History

2023-09-24 21:36:57 +08:00
import os
import sys
# single thread doubles cuda performance - needs to be set before torch import
if any(arg.startswith('--execution-provider') for arg in sys.argv):
os.environ['OMP_NUM_THREADS'] = '1'
# reduce tensorflow log level
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
2024-08-13 20:08:06 +08:00
# Force TensorFlow to use Metal
os.environ['TENSORFLOW_METAL'] = '1'
2023-09-24 21:36:57 +08:00
import warnings
from typing import List
import platform
import signal
import shutil
import argparse
import torch
import onnxruntime
import tensorflow
import modules.globals
import modules.metadata
import modules.ui as ui
from modules.processors.frame.core import get_frame_processors_modules
from modules.utilities import has_image_extension, is_image, is_video, detect_fps, create_video, extract_frames, get_temp_frame_paths, restore_audio, create_temp, move_temp, clean_temp, normalize_output_path
if 'ROCMExecutionProvider' in modules.globals.execution_providers:
del torch
warnings.filterwarnings('ignore', category=FutureWarning, module='insightface')
warnings.filterwarnings('ignore', category=UserWarning, module='torchvision')
2024-08-14 03:54:50 +08:00
def get_system_memory() -> int:
"""
Get the total system memory in GB.
Returns:
int: Total system memory in GB.
"""
if platform.system().lower() == 'darwin':
try:
import psutil
return psutil.virtual_memory().total // (1024 ** 3)
except ImportError:
# If psutil is not available, return a default value
return 16 # Assuming 16GB as a default for macOS
else:
# For other systems, we can use psutil if available, or implement system-specific methods
try:
import psutil
return psutil.virtual_memory().total // (1024 ** 3)
except ImportError:
# If psutil is not available, return a default value
return 8 # Assuming 8GB as a default for other systems
def suggest_max_memory() -> int:
"""
Suggest the maximum memory to use based on the system's total memory.
Returns:
int: Suggested maximum memory in GB.
"""
total_memory = get_system_memory()
# Suggest using 70% of total memory, but not more than 64GB
suggested_memory = min(int(total_memory * 0.7), 64)
return max(suggested_memory, 4) # Ensure at least 4GB is suggested
2023-09-24 21:36:57 +08:00
def parse_args() -> None:
signal.signal(signal.SIGINT, lambda signal_number, frame: destroy())
program = argparse.ArgumentParser()
program.add_argument('-s', '--source', help='select an source image', dest='source_path')
program.add_argument('-t', '--target', help='select an target image or video', dest='target_path')
program.add_argument('-o', '--output', help='select output file or directory', dest='output_path')
program.add_argument('--frame-processor', help='pipeline of frame processors', dest='frame_processor', default=['face_swapper'], choices=['face_swapper', 'face_enhancer'], nargs='+')
2024-08-13 20:08:06 +08:00
program.add_argument('--keep-fps', help='keep original fps', dest='keep_fps', action='store_true', default=True)
2023-09-24 21:36:57 +08:00
program.add_argument('--keep-audio', help='keep original audio', dest='keep_audio', action='store_true', default=True)
2024-08-13 20:08:06 +08:00
program.add_argument('--keep-frames', help='keep temporary frames', dest='keep_frames', action='store_true', default=True)
2023-09-24 21:36:57 +08:00
program.add_argument('--many-faces', help='process every face', dest='many_faces', action='store_true', default=False)
2024-08-14 02:03:22 +08:00
program.add_argument('--video-encoder', help='adjust output video encoder', dest='video_encoder', default='libx265', choices=['libx264', 'libx265', 'libvpx-vp9'])
program.add_argument('--video-quality', help='adjust output video quality', dest='video_quality', type=int, default=1, choices=range(52), metavar='[0-51]')
2023-09-24 21:36:57 +08:00
program.add_argument('--max-memory', help='maximum amount of RAM in GB', dest='max_memory', type=int, default=suggest_max_memory())
2024-08-13 20:08:06 +08:00
program.add_argument('--execution-provider', help='execution provider', dest='execution_provider', default=['coreml'], choices=suggest_execution_providers(), nargs='+')
2023-09-24 21:36:57 +08:00
program.add_argument('--execution-threads', help='number of execution threads', dest='execution_threads', type=int, default=suggest_execution_threads())
2024-08-14 03:54:50 +08:00
program.add_argument('--video-processor', help='video processor to use', dest='video_processor', default='cv2', choices=['cv2', 'ffmpeg'])
program.add_argument('--model', help='model to use for face swapping', dest='model', default='inswapper_128v2.fp16.onnx')
2023-09-24 21:36:57 +08:00
program.add_argument('-v', '--version', action='version', version=f'{modules.metadata.name} {modules.metadata.version}')
args = program.parse_args()
modules.globals.source_path = args.source_path
modules.globals.target_path = args.target_path
modules.globals.output_path = normalize_output_path(modules.globals.source_path, modules.globals.target_path, args.output_path)
modules.globals.frame_processors = args.frame_processor
modules.globals.headless = args.source_path or args.target_path or args.output_path
modules.globals.keep_fps = args.keep_fps
modules.globals.keep_audio = args.keep_audio
modules.globals.keep_frames = args.keep_frames
modules.globals.many_faces = args.many_faces
modules.globals.video_encoder = args.video_encoder
modules.globals.video_quality = args.video_quality
modules.globals.max_memory = args.max_memory
2024-08-13 20:08:06 +08:00
modules.globals.execution_providers = ['CoreMLExecutionProvider'] # Force CoreML
2023-09-24 21:36:57 +08:00
modules.globals.execution_threads = args.execution_threads
2024-08-14 03:54:50 +08:00
modules.globals.video_processor = args.video_processor
modules.globals.model = args.model
2023-09-24 21:36:57 +08:00
if 'face_enhancer' in args.frame_processor:
modules.globals.fp_ui['face_enhancer'] = True
else:
modules.globals.fp_ui['face_enhancer'] = False
modules.globals.nsfw = False
def suggest_max_memory() -> int:
if platform.system().lower() == 'darwin':
2024-08-14 02:03:22 +08:00
return 6
return 4
2023-09-24 21:36:57 +08:00
def suggest_execution_providers() -> List[str]:
2024-08-13 20:08:06 +08:00
return ['coreml'] # Only suggest CoreML
2023-09-24 21:36:57 +08:00
def suggest_execution_threads() -> int:
2024-08-14 02:03:22 +08:00
if platform.system().lower() == 'darwin':
return 12
return 4
2023-09-24 21:36:57 +08:00
def limit_resources() -> None:
if modules.globals.max_memory:
2024-08-13 20:08:06 +08:00
memory = modules.globals.max_memory * 1024 ** 6
import resource
resource.setrlimit(resource.RLIMIT_DATA, (memory, memory))
2023-09-24 21:36:57 +08:00
def release_resources() -> None:
2024-08-13 20:08:06 +08:00
pass # No need to release CUDA resources
2023-09-24 21:36:57 +08:00
def pre_check() -> bool:
if sys.version_info < (3, 9):
update_status('Python version is not supported - please upgrade to 3.9 or higher.')
return False
if not shutil.which('ffmpeg'):
update_status('ffmpeg is not installed.')
return False
return True
def update_status(message: str, scope: str = 'DLC.CORE') -> None:
print(f'[{scope}] {message}')
if not modules.globals.headless:
ui.update_status(message)
def start() -> None:
for frame_processor in get_frame_processors_modules(modules.globals.frame_processors):
if not frame_processor.pre_start():
return
if has_image_extension(modules.globals.target_path):
2024-08-13 20:08:06 +08:00
process_image()
else:
process_video()
def process_image():
if modules.globals.nsfw == False:
from modules.predicter import predict_image
if predict_image(modules.globals.target_path):
destroy()
shutil.copy2(modules.globals.target_path, modules.globals.output_path)
for frame_processor in get_frame_processors_modules(modules.globals.frame_processors):
update_status('Progressing...', frame_processor.NAME)
frame_processor.process_image(modules.globals.source_path, modules.globals.output_path, modules.globals.output_path)
if is_image(modules.globals.target_path):
update_status('Processing to image succeed!')
else:
update_status('Processing to image failed!')
def process_video():
2023-09-24 21:36:57 +08:00
if modules.globals.nsfw == False:
from modules.predicter import predict_video
if predict_video(modules.globals.target_path):
destroy()
update_status('Creating temp resources...')
create_temp(modules.globals.target_path)
update_status('Extracting frames...')
2024-08-14 03:54:50 +08:00
if modules.globals.video_processor == 'cv2':
extract_frames_cv2(modules.globals.target_path)
else:
extract_frames_ffmpeg(modules.globals.target_path)
2023-09-24 21:36:57 +08:00
temp_frame_paths = get_temp_frame_paths(modules.globals.target_path)
for frame_processor in get_frame_processors_modules(modules.globals.frame_processors):
update_status('Progressing...', frame_processor.NAME)
frame_processor.process_video(modules.globals.source_path, temp_frame_paths)
if modules.globals.keep_fps:
update_status('Detecting fps...')
fps = detect_fps(modules.globals.target_path)
update_status(f'Creating video with {fps} fps...')
create_video(modules.globals.target_path, fps)
else:
update_status('Creating video with 30.0 fps...')
create_video(modules.globals.target_path)
if modules.globals.keep_audio:
if modules.globals.keep_fps:
update_status('Restoring audio...')
else:
update_status('Restoring audio might cause issues as fps are not kept...')
restore_audio(modules.globals.target_path, modules.globals.output_path)
else:
move_temp(modules.globals.target_path, modules.globals.output_path)
clean_temp(modules.globals.target_path)
if is_video(modules.globals.target_path):
update_status('Processing to video succeed!')
else:
update_status('Processing to video failed!')
2024-08-14 03:54:50 +08:00
def extract_frames_cv2(target_path: str) -> None:
import cv2
capture = cv2.VideoCapture(target_path)
frame_num = 0
while True:
success, frame = capture.read()
if not success:
break
cv2.imwrite(f'{get_temp_frame_paths(target_path)}/%04d.png' % frame_num, frame)
frame_num += 1
capture.release()
def extract_frames_ffmpeg(target_path: str) -> None:
import ffmpeg
(
ffmpeg
.input(target_path)
.output(f'{get_temp_frame_paths(target_path)}/%04d.png', start_number=0)
.overwrite_output()
.run(capture_stdout=True, capture_stderr=True)
)
2023-09-24 21:36:57 +08:00
def destroy() -> None:
if modules.globals.target_path:
clean_temp(modules.globals.target_path)
quit()
def run() -> None:
parse_args()
if not pre_check():
return
for frame_processor in get_frame_processors_modules(modules.globals.frame_processors):
if not frame_processor.pre_check():
return
limit_resources()
2024-08-13 20:08:06 +08:00
print(f"ONNX Runtime version: {onnxruntime.__version__}")
print(f"Available execution providers: {onnxruntime.get_available_providers()}")
print(f"Selected execution provider: CoreMLExecutionProvider")
# Configure ONNX Runtime to use only CoreML
onnxruntime.set_default_logger_severity(3) # Set to WARNING level
options = onnxruntime.SessionOptions()
options.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
# Test CoreML with a dummy model
try:
import numpy as np
from onnx import helper, TensorProto
# Create a simple ONNX model
X = helper.make_tensor_value_info('input', TensorProto.FLOAT, [1, 3, 224, 224])
Y = helper.make_tensor_value_info('output', TensorProto.FLOAT, [1, 3, 224, 224])
node = helper.make_node('Identity', ['input'], ['output'])
graph = helper.make_graph([node], 'test_model', [X], [Y])
model = helper.make_model(graph)
# Save the model
model_path = 'test_model.onnx'
with open(model_path, 'wb') as f:
f.write(model.SerializeToString())
# Create a CoreML session
session = onnxruntime.InferenceSession(model_path, options, providers=['CoreMLExecutionProvider'])
# Run inference
input_data = np.random.rand(1, 3, 224, 224).astype(np.float32)
output = session.run(None, {'input': input_data})
print("CoreML init successful and being used")
print(f"Input shape: {input_data.shape}, Output shape: {output[0].shape}")
# Clean up
os.remove(model_path)
except Exception as e:
print(f"Error testing CoreML: {str(e)}")
print("The application may not be able to use GPU acceleration")
# Configure TensorFlow to use Metal
try:
tf_devices = tensorflow.config.list_physical_devices()
print("TensorFlow devices:", tf_devices)
if any('GPU' in device.name for device in tf_devices):
print("TensorFlow is using GPU (Metal)")
else:
print("TensorFlow is not using GPU")
except Exception as e:
print(f"Error configuring TensorFlow: {str(e)}")
# Configure PyTorch to use MPS (Metal Performance Shaders)
try:
if torch.backends.mps.is_available():
print("PyTorch is using MPS (Metal Performance Shaders)")
torch.set_default_device('mps')
else:
print("PyTorch MPS is not available")
except Exception as e:
print(f"Error configuring PyTorch: {str(e)}")
2023-09-24 21:36:57 +08:00
if modules.globals.headless:
start()
else:
window = ui.init(start, destroy)
window.mainloop()